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Abstract: The paper deals with the numerical solution of two phase unsteady flow in a steam turbine stage
performed by in-house numerical code. The main issues related to the flow model, numerical method and
problem formulation are presented. The effect of droplet size of incoming wet steam is discussed.
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We consider the flow of steam with velocity, pressure and temperature corresponding to the con-
ditions within the low pressure part of a steam turbine. The rapid expansion of steam leads to non-
equilibrium phase change, i.e. the condensation appears when the steam temperature drops sufficiently
below the saturation temperature (typically 30−40K). We consider the liquid phase in the form of high
amount of small spherical droplets dispersed in vapor and having the same velocity as the vapor. The
flow model is based on the conservation of mass, momentum and energy for the mixture and the transport
equation for the mass fraction of liquid phase. Such kind of model, known also as ’mixture model’, is
commonly used, e.g. Dykas et al (2003), Young (1992) or Šejna and Lain (1994). In reality there is a
whole spectra of droplet sizes in the elemental volume of mixture. Flow models are mostly based on the
average radius approximation, e.g. Dykas et al (2003). We consider three additional transport equations
for the moments according to Hill (1966) to obtain higher precision of average droplet size prediction.

The flow model includes convection, nucleation and droplet growth phenomena, which have very
different time scales. Current numerical method is based on the splitting method of Strang (1968), where
each phenomena is treated by individual numerical method. Current numerical method has been verified
for the case of steam flow in the Barschdorff nozzle, for details see Halama et al (2011). All cases
have been chosen to have steam temperature slightly below saturation temperature and zero wetness at
the inlet, nucleation then appeared inside the domain. Recent work has been aimed at the case of flow
with nonzero wetness at the inlet. Since it is practically impossible to get reliable information about
the droplet size structure of incoming steam, some basic numerical study for case of flow in a nozzle
has been performed. The test have shown, that too small (under-predicted) size of droplets at the inlet
means that secondary nucleation is hardly noticeable, since the inflow vapor contains too many droplets.
The droplet growth is negligible, if the size of droplets approaches the critical radius. If we consider
bigger droplets at the nozzle inlet, then droplets gradually grow and the sub-cooling is small, so there
is no secondary nucleation. The big droplets (over-predicted size) at the inlet have relatively small total
surface of droplets, so the droplet growth is small. Secondary nucleation generates the group of small
droplets, which are then averaged with big droplets from the inlet and resulting average size is no more
able to represent the droplet size spectra. Studied cases have referred to the considerable sensitivity of
condensing steam flow model on the structure of liquid phase at the inlet. Therefore one has to be very
careful with the estimation of inlet boundary conditions as well as with conclusions about results of
numerical simulation.

Last part of the paper presents the first results of unsteady stator-rotor interaction with the non-zero
wetness at the inlet. Initial computations have been performed for inlet boundary conditions with under-
predicted size of droplets. This case yielded solution with strong oscillations. The oscillations have been
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partly removed by the regularization of droplet growth model. It was finally found, that oscillations are
forced also by ’too small’ size of incoming droplets. Therefore we have modified the inlet boundary
condition to have ’bigger’ droplets. The Fig. 1 shows the example of instantaneous contours of pressure
and wetness for the later case.

(a) pressure (b) wetness

Fig. 1: Instantaneous contours of flow field.
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