
PREDICTING SELF-COMPACTING CONCRETE SHRINKAGE 
BASED ON A MODIFIED FUZZY LOGIC MODEL 

W. R. L. da Silva*, P. !temberk** 

Abstract:  The occurrence of shrinkage in concrete leads to development of internal tension stresses 
which can result in concrete cracking. The presence of cracks in concrete creates pathways that ease the 
access of aggressive agents reducing concrete structure durability and service life. Consequently, the 
correct reduction of shrinkage strain during the designing process is important to assure the structure’s 
durability and long time serviceability. In light of this, the objective of this research was to develop an 
experimental based fuzzy logic model to predicting self-compacting concrete shrinkage. The fuzzy logic 
model decision-making is optimized though an evolutionary computing method, therefore enhancing 
computational effectiveness. The obtained results are compared to the B3 shrinkage prediction model and 
statistical analysis, indicating the reliability of the proposed model, are presented. 
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1. Introduction 

Concrete shrinkage is defined as decrease in concrete volume with time. This volume decrease does 
not depend on external stress and it is not completely reversible. The shrinkage in concrete is 
associated with a series of factors, such as chemical reaction, gradient in temperature, and movement 
and loss of water. Each one of these factors leads to different types of shrinkage, such as, autogenous, 
plastic, drying and thermal shrinkage, among others. For comprehensive review see Brooks, J., 2003, 
and Mehta & Monteiro, 2006, publications. 

The occurrence of shrinkage leads to development of internal tension stresses, which may result in 
concrete cracking. The presence of cracks in concrete creates pathways that ease the access of 
aggressive agents into concrete and contributing to reduction in concrete structure durability. An 
example of concrete structure damaged by the occurrence of excessive shrinkage is illustrated in 
Fig. 1. 

 

  
(a) (b) 

Fig.1: Foundation block of a residential building in Prague, Czech Republic: (a) construction side 
overall view and (b) detail of 0.8mm crack width caused by concrete shrinkage. 
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Hence, it can be noticed that a trustworthy definition of concrete shrinkage strain is important in 
the designing process of structures, since it helps reducing maintenance costs and ensures that the 
specifications of expected service life and durability requirements will be fulfilled. 

Self-compacting concrete, SCC, is a high-performance concrete that can flow under its own weight 
so as to completely fill the formwork and self-consolidate without any mechanical vibration (Erdem et 
al., 2009, Gaimster et al., 2003). SCC is specifically designed to achieve excellent deformability, a low 
risk of blockage, and good stability, ensuring a high formwork filling capacity. The use of SCC is 
rapidly developing in the construction industry, most likely due to the production process costs and the 
advantageous organizational nature of this material. 

Nonetheless, it is important to consider that the production of SCC is more difficult than that of 
conventional concrete and many parameters have to be considered in order to obtain a final product 
that has an acceptable quality for the intended purpose. When compared to conventional concrete, 
SCC mixtures requires a higher volume of cement paste in the composition to achieve excellent 
deformability and high formwork filling capacity. Then, considering that shrinkage is a results of 
hydration reaction in the cement paste, SCCs are likely to present higher values of shrinkage strain. 
Hence, measuring shrinkage strain in SCC mixtures arises as a relevant issue. 

Usually, experimental measurements are required to determine the concrete shrinkage strain. 
However, measurement of shrinkage strain is laborious, time consuming and expensive, therefore 
construction designers tend to use shrinkage prediction models. These models aim to determine 
concrete shrinkage strain in a faster and less expensive way when compared to experimental 
measurements.Amongst several existing prediction models, the B3 model has been selected for 
comparison in this research. The B3 model was developed in 1995 by Ba"ant, (Ba"ant, 1995), this 
model has been updated over time and its latest version dates back to 2000, (Ba"ant et al., 2000), 

Though regularly used, shrinkage strains obtained from the prediction models do not necessarily 
match experimental measurements. The comparison of experimentally measured and predicted,  
shrinkage strain curves by the B3 model are presented in Fig. 2. The experimental curves, shown in 
Fig. 2a and b, consist of a part of experimental data from published by Al-Attar, 2008 and Brook et al., 
2001. for different types of concrete.  

 

  
(a) (b) 

Fig. 2: Comparison of predicted and experimental shrinkage strain curves for (a) Conventional 
Concrete – input data from Al-Attar, 2008, and (b) High Strength Concrete – input data from Brooks 

et al., 2001. 

From Fig. 2, a considerable difference from experimental and predicted shrinkage strain can be 
noticed, showing the relative error of B3 model in predicting shrinkage strains. This way, it can be 
stated that the reliability of this prediction model is open to discussion, and improvements are 
required. 

In light of this, the present work aims to develop a methodology for defining an experimental-
based prediction model for SCC shrinkage. In this study, Soft-computing techniques, particularly 
fuzzy logic systems and evolutionary computing, were used to develop a modelling methodology, 
which was then applied to build a SCC shrinkage strain prediction model. Further, through statistical 
analysis, the results from the obtained model were compared to other published data. 
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2. Fuzzy logic and evolutionary computing 

Fuzzy theory, first introduced by Zadeh in 1967, (Zadeh, 1967), correspond to a natural way of 
thinking where verbally expressed rules are applied to deal with vagueness, imprecision and ill-
defined data. Basically, fuzzy logic control systems comprise three steps: fuzzification, decision-
making and defuzzification. The fuzzification consists of converting the crisp input values into degrees 
of membership by means of input membership functions. This step is followed by the decision-
making, where a degree of membership is assigned to the output variable based on the rule based and 
output fuzzy sets. Finally, the defuzzification is processed to convert the output fuzzy set in to a single 
value, in this case, the predicted shrinkage strain value. 

The key factors to achieve an acceptable performance in a fuzzy logic system are connected to the 
definition of the number of fuzzy sets and the shape of the membership functions. Commonly, there 
are xy fuzzy rules, where x and y are the number of sets and input variables, accordingly. In the 
classical fuzzy logic approach, the number of fuzzy rules can be reduced by the user’s experience, and 
the shape of membership functions is usually adopted as linear to simplify calculations. This approach 
application has been used by !temberk et al., 2011 to simulate heat evolution during hydration of 
typical Portland cement.  

Nevertheless, when the classical approach is implemented to model non-linear materials behavior, 
the final results are a rather rough shaped piecewise curve as indicated in Fig.3. Note that, the use of 
the classical fuzzy logic approach is also feasible to model non-linear materials behavior. However, a 
considerable larger number of linear fuzzy sets is required to obtain smoothed curves, thus leading to a 
longer data collection time and high computational cost. In order to improve the entire modelling 
process a modified approach, which includes evolutionary computing methods, is proposed in this 
research. 

 
Fig. 3: Shrinkage strain curve predicted by the classical fuzzy logic approach 

Evolutionary computing comprises robust optimization methods that can be generally applied 
without recourse to domain-specific heuristics. These methods operate on a population of potential 
solutions and apply the principle of survival of the fittest to produce successively better 
approximations to a solution, (Coley, 1999). Amongst several Evolutionary computing methods, 
Genetic Algorithms, GA, have been successfully applied for numerical optimization in civil 
engineering, e.g., Rokonuzzaman et al., 2010 presents an application of GA for calibration of 
parameters for a hardening-softening constitutive model. 
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GAs consist of adaptive heuristic search algorithms based on the principles of Darwin’s theory of 
natural selection. They represent an intelligent exploitation of a random search that uses historical 
information to guide the search into the region of better performance, within a defined search space. 
The basic form of a GA involves three operators to achieve evolution: selection, or reproduction, 
crossover and mutation, (Coley, 1999). 

3. Proposed methodology for optimization of fuzzy decision-making 

The proposed methodology combines fuzzy logics and genetic algorithms to optimize fuzzy decision 
making, which is achieved by optimizing the shape of the membership functions. Bearing in mind this 
idea, and focusing on SCC shrinkage, the following methodology is proposed: 

Initially, the user has to define the number of representative intervals, Nint, of shrinkage strain, esh, 
and concrete age, t, for experimental shrinkage strain curves obtained from concrete mixtures with 
different volumes of cement paste. Note that, the more complex the shape of the curve the higher the 
number of intervals necessary to achieve optimal results. In the sequence, the user specifies the size of 
the population, Spop, defined as 10, which will be used in the genetic part of the algorithm. The 
optimization process is from this point on an automatic process. Based on the value set for Nint, the 
encoding of each individual, or chromosome, from the population is defined. The encoding comprises 
a string of nenc = 2#Nint real numbers, which correspond to the exponent values, EL and ER, from each 
membership function to be optimized, see Fig.4. 

 

!
Fig. 4: General equation and shape of the membership functions to be optimized. 

Subsequently, an initial random population is generated and the fitness function, f(x), is evaluated. 
The fitness function corresponds to the MSE function described in Eq.(1). 
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where n is the number of data points considered in the analysis, dj is the percent difference between 
each predicted and measured data point, fj is the mean square error for data set j, and fall is the overall 
mean square error, computed by means of Eq.(2). 
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with N as the total number of data sets. 

Next, three genetic operators: selection, crossover and mutation, are applied to generate a new 
population. The selection operator chooses the chromosomes in the population for reproduction. In 
this case, the tournament selection scheme, which selects the best fitness from individuals chosen at 
random from the population, was applied. The selected chromosomes, or parents, are then crossed 
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over by one-point crossover scheme, with a probability, Cprob set as 90%, to create a new individual to 
be included in the population. This scheme sets an independent randomized crossover point for 
couples of parents, whose data is swapped to create a new population. After that, a mutation operator 
is applied to maintain genetic diversity. The mutation is performed by disturbance with a probability, 
Mprob, set as of 10%. The mutation operator randomly flips some of the values in a chromosome to 
create a mutated version of the individual to be incorporated in the population. After a new population 
has been generated, the fitness function re-evaluates all individuals from the new population. The 
obtained results, f(x’), are then compared with those from previous populations. Further, elitism is 
applied, i.e., the best overall solution is stored. In case none of individual from the new population 
shows better fitness than the stored solution, the individual with the worst solution from the new 
population is replaced by the best overall solution. The automatic process of generating a new 
population and evaluating the best fit is repeated until convergence occurs. Convergence was 
considered as achieved when more than 200 consecutive runs do not lead to any improvements in the 
fitness function result. The final result consists of a group of optimized fuzzy sets which will compose 
the fuzzy decision-making. Once the group of optimized fuzzy sets is defined, the decision making is 
then based on the rule base, Rnr, defined in (3), and the final predicted shrinkage strain, !sh,output, is 
computed by means of Eq.(4). 

,: ,, nrshshnrcpcp
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where nr is the number of rules; Vcp is the cement paste volume input value, in l/m3; Vcp,nr and esh,nr are 
the optimized group of fuzzy sets for cement paste volume and shrinkage strain, respectively; µnr is the 
degree of membership assigned to the group esh,nr from each rule Rnr. 

The methodology described in this section was applied for the experimental data presented by 
Leemann et al., 2011, and the results from Loser et al., 2009, were used to verify the optimized model. 

4. Results and discussion 

In the present analysis the volume of cement paste was chosen as input parameter and two experimental 
curves, illustrated in Fig.5, were considered as training data. The curves from Fig.5 were taken from the 
experimental database presented by Leemann et al., 2011. 
 

!
Fig. 5: Shrinkage strain curves of SCC mixtures from Leemann et al., 2011.!

The proposed methodology was performed for this data and convergence was achieved after 
approximately 500 iterations. The fuzzy logic prediction model for SCC, named FL-I model, is then 
composed by the optimized fuzzy sets, the rule base, and the final output equation, presented in Eq.(4). 
The graphical representation of the FL-I model, illustrated in Fig.6, indicates the exponent values of the 
membership functions and the rule base use by the model to predict the SCC shrinkage strain curve. 

Silva W. R. L. da, Štemberk P. 1177



 

 
Fig. 6: Graphical representation of FL-I model. 
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Since only two curves were available for the optimization process, the fuzzy sets connected to the 
volume of cement paste had to be set as a linear functions, see Fig.6. It is also important to observe that 
the obtained model is suitable for predicting shrinkage strain up to 90 days and testing conditions defined 
by Leemann et al., 2011.  

The experimental data published by Loser et al., 2009 was used to verify the quality of the FL-I 
model in predicting shrinkage strain. This data comprises shrinkage curves of five different SCCs with 
testing conditions compatible to the limits defined to the FL-I model. The volume of cement paste of 
each SCC, necessary as an input parameter, is listed in Table 1. Moreover, the shrinkage strain curves of 
each SCC mixture from Loser et al., 2009 were also compared to the strain curves obtained from the B3 
prediction model. For that, the input data shown in Table 1 was used. 

 

Table 1. Input data used to predict shrinkage strain based on B3 and FL-I model, (Loser et al., 2009). 

Input Parameters 
SCC 

I II III IV V 

Cement paste volume, Vcp [l/m3]* 329.0 349.0 316.0 342.0 332.0 

Design compressive strength, fc’ [MPa] 53.3 63.1 51.0 49.4 66.0 

Compressive strength at 28 days, fcm28 [MPa] 61.3 71.1 59.0 57.4 74.0 

Curing time, tc [days] 1 

Relative Humidity, RH [%] 70.0% 

Cement type CEM I 42.5 

Specimen size [mm] 120 # 120 # 360 (Shape: infinite prism) 
* Considered as an input parameter of the FL-I model; 

The MSE values, computed by Eq.(1), for the FL-I and the B3 model are presented in Table 2. 

Table 2. Individual and overall MSE values for different shrinkage prediction models. 

fmodel  [%] 
SCC 

foverall [%] 
I II III IV V 

B3 31.3 27.4 29.0 17.2 32.9 28.1 

FL-I 6.9 19.1 4.4 16.2 14.1 13.4 

From Table 2, it can be seen that the FL-I model presented the lower MSE values than the B3 model 
in all cases. By using the values from Table 2 in Eq.2 an overall MSE of 13.5% is obtained for the FL-I 
model, against 28.1% for the B3. Therefore, it can be concluded that, once the limits FL-I model are 
respected, the results predicted by the FL-I model are more reliable than B3. 

Nonetheless, though the overall MSE presented by the FL-I model was lower than the B3, its value is 
still considered high, around 15%. The reason for that is probably because only two experimental curves 
were used as training data. If an intermediary curve was included in the training data set, the linear shape 
of the Vcp fuzzy set, see Fig.6, would be optimized. Consequently, the final MSE of FL-I model would be 
even lower than observed. 

To verify this assumption, one of the experimental curves from Loser et al., 2009, more specifically 
SCC IV, see Table 1, was included in the training data. The optimization process was again performed 
and the exponent values, ER and EL, obtained for the optimized fuzzy sets are indicated in Fig.7. This 
leads to a new prediction model, called FL-II model. It is important to observe that the experimental data 
from SCC IV was only used as training data to optimize the shape of the fuzzy set of cement paste 
volume, therefore the optimized fuzzy sets connected to the shrinkage strain, esh,, and the rule base, 
presented Fig.6, remained the same. 

Once more, the experimental and predicted shrinkage strains, from FL-II model, were compared and 
the MSE values were computed by Eq.(1). The obtained results are presented in Table 3 together with the 
MSE values from FL-I model. 
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Fig. 7: Optimized group of fuzzy sets connected to the volume of cement paste for FL-II model. 

 

Table 3. Individual and overall MSE values for different shrinkage prediction models. 

fmodel  [%] 
SCC 

foverall [%] 
I II III IV V 

FL-I 6.9 19.1 4.4 16.2 14.1 23.7 

FL-II 8.9 3.8 11.2 - 3.9 7.6 

From Table 3, it can be seen that the overall MSE value for the FL-II are considerably lower than 
the FL-I model. Hence, the assumption that including additional training data would lead to a 
prediction model with lower error is verified. Although higher than the FL-I model in one case, the 
individual values of MSE for the FL-II were always below those obtained for the B3 model. 

Finally, the lower MSE values from FL-I and FL-II models, compared to the B3 model, confirm their 
quality to simulate materials behaviour, and also the success in combining fuzzy logics and genetic 
algorithms to build optimized materials models. The obtained model are suitable to predict SCC 
shrinkage strain within the limits of the model, excluding the need of additional experimental analyses. 

5. Final considerations 

By defining a shrinkage strain prediction model for SCC the objective of this paper has been achieved. 
Based on the presented results the following conclusion can be drawn. 

The use of the proposed methodology for optimization of fuzzy decision-making has shown 
satisfactory results. The optimized group of fuzzy sets led to a proper prediction of the shrinkage curves 
with a reduced number of rules, making the modelling process more effective. 

The statistical analysis leads to overall mean square error around 30% for the B3 model, against 
13.4% for the FL-I model, indicating that the FL-I model better represents the materials behaviour and 
can be used to predict SCC shrinkage once the limits of the model are respected. The further inclusion of 
additional training data in the optimization methodology contributed to reduce the overall error of the 
model from ~15% to ~7%, demonstrating the flexibility of the model in self-adjusting according to the 
training data. Such flexibility is a great advantage of fuzzy logic-based model when compared to the 
prediction models that are based on equations and its constants. 
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