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Abstract: The method for solving viscous incompressible flows, based on Glowinski, Pan,Hesla & 
Joseph (1998), is presented for the direct numerical simulation of viscous incompressible flow. It uses a 
finite element discretization in space and an operator-splitting technique for discretization in time. 
Quadratic approximation is employed for velocity flow and linear approximation for pressure on triangle 
elements. The goal is to develop more efficient and accurate numerical tool for computing viscous flows. 
The accuracy of the presented method has been confirmed on two common cases by implementation in 
Matlab program: the Poiseuille flow test, and on driven cavity flow test. 
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1. Introduction 

The aim of t his article is to present a method for solving viscous incompressible flows. The finite 
element implementation is based on the incompressible Navier-Stokes equations on structured two 
dimensional triangular meshes with using operator splitting for time discretization (Glowinski 2003). 
The fractional-time-step scheme described by Marchuk (1990) has been employed. Liquid is supposed 
to be incompressible and Newtonian. The advantage of this method is that no repeated remeshing is 
required. Also the assembled mass matrix remains constant and so it does not have to be assembled at 
every time step. By splitting one time step into three successive substeps the discretization enables 
better approximation of results. Pressure is computed in this case in the first sub-step while velocity is 
computed at each substep. To discretize the domain the Taylor-Hood triangular elements have bed 
used with second degree polynomic approximation of velocity and first degree polynomic 
approximation of pressure. 

2. Numerical validations: 

The matlab implementation of the presented method has been verified using two benchmark tests: the 
flow between parallel plates (Poiseuille test) where the quadratic behavior of the velocity has been 
verified, and on driven cavity flow test. 

2.1. Poiseuille test in tube: 

In this classic test, the steady state velocity and pressure distributions is simulated for a fluid moving 
laterally between two plates whose length and width is much greater than the distance separating them. 
The geometry of the studied domain has been divided into 400 elements. The perfect friction on both 
plates (zero velocity) has been assumed. The results agree with the analytic solution. 

2.2. Driven Cavity flow 

The flow inside closed cavity has been simulated and compared to the results presented in literature 
(Botella and Peyret, 1998 ; Rabenold, 2005). The viscosity was set to 𝜂 = 10−2𝑃𝑎 𝑠, and the 
Reynold’s number is computed as 1/𝜂 (based on geometry of size 1 and maximum velocity 1). The 
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following parameters has been used: mass density 𝜌 = 1.0 𝑘𝑔/𝑚3, viscosity 𝜂 = 10−2𝑃𝑎 𝑠, and the 
time step ∆𝑡 = 0.01. The results are in good agreement, even though the present values are restricted 
to 30x30 grid points (see table No. 1).  

 
Tab. 1: Velocity extreme through cavity centerlines at 𝑅𝑒 = 100 

method 𝑢𝑚𝑖𝑛 𝑣𝑚𝑖𝑛 𝑣𝑚𝑎𝑥  

Present -0.2162 -0.2493 0.1771  

Botella and Peyret -0.21279 -0.25266 0.17854  

Rabenold -0.2140424 -0.2538030 0.1795728  

 
Figure 4: Velocity profiles through cavity centerlines at 𝜂 = 10−2𝑃𝑎 𝑠 and 30 x 30 grid size. 

Conclusion 

Presented work describes formulation and implementation of non-stationary, incompressible flow 
finite element solver. The Tayler-Hood elements (P2-P1) have been implemented. For time 
discretization the operator splitting method is used and it reduces computation of velocity and pressure 
together to one time substep whereas in other substeps only velocity is being solved. The model is 
verified using standard benchmark tests from literature. 
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