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Abstract: Mass matrix diagonalization in terms of a finite element method (FEM) is essential for an effec-
tive deployment of the explicit method as one of the direct integration methods of the motion equations of
elastodynamics. A particular attention is focused on the mass matrix diagonalization of the semi-loof shell
element. Its diagonalization requires a specially designed universal diagonalization scheme that is derived
from the scaling HRZ method. Another analyzed aspect is the problem of preserving the moment of inertia
for various types of finite elements. The proposed scheme is implemented in the finite element program and
consequently tested on several problems.
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1. Introduction

The most suitable approach to numerically solving problems of elastodynamics turns out to be a finite
element method (FEM) [Hughes (1987)] that seems to provide the most effective way of dealing with
practical cases. A vast majority of those cannot be worked out using analytical closed-form solutions, or
the solutions are just too difficult. FEM is a wonderfully versatile method that can be used even in the
most complex constitutive equations and which enables the approximation of a wide range of boundary
conditions [Zienkiewicz et al. (2005)]. After applying the FEM to elastodynamics problems you will
obtain

Mq̈ + Kq = Fext (1)

where q is a nodal displacement, q̈ nodal acceleration, Fext represents external forces, K denotes the
stiffness matrix, which is symmetric, and after applying boundaries conditions also positive semidefinite
and M is a symmetric and positive definite mass matrix given by the integral

M =

∫

V
ρHTHdV = [mij ] (2)

where ρ is mass density, H matrix of shape functions and V represents elements volume.

There is a large number of different numerical methods that are related to a FEM-based spatial
discretization [Zienkiewicz et al. (2005)]. One of the most frequently implemented methods is a so called
semidiscretization which initially performs a spatial discretization and then runs an independent time
discretization. The time part of any problem is usually dealt with using methods of direct integration,
which can be implicit or explicit [Hughes (1987)]. This work focuses especially on explicit methods,
notably the central difference method [Dokainish (1989)] which deals with time derivations this way

q̇t =
1

2∆t

(
qt+∆t − qt−∆t

)
a q̈t =

1

∆t2
(
qt+∆t − 2qt + qt−∆t

)
(3)
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where ∆t denotes time step and qt−∆t, qt and qt+∆t are nodal displacements in previous, actual and
next time step, respectively. In order to ensure effectivity of this method, explicit formulation of qt+∆t,
it is vital to stress the importance of the mass matrix of the system which needs to be diagonal – as you
can see in equation (4) which combines (2) and (3)

1

∆t2
Mqt+∆t = Fext −

(
K− 2M/∆t2

)
qt −

(
M/∆t2

)
qt−∆t (4)

Only then, with diagonal mass matrix M, becomes the related inversion simple and the actual computa-
tion is elementary. However, a consistent mass matrix does not fulfill this requirement generally. Hence
a great effort has been made to develop some diagonalization methods [Zienkiewicz et al. (2005)].

The mass matrix diagonalization may involve some changes in fundamental physical properties (e.g.
mass, the moment of inertia) which could have a significant impact on the system behavior. It is therefore
desirable to devise a method that preserves those system parameters to the highest possible degree and at
the same time allows for a universal application on a wide range of finite elements.

1.1. Semi-loof Shell elements

A versatility of the isoparametric elements has been transferred to a semi-loof shell element during the
years of the research conducted by Irons and his team, related to the study of semi-loof shell element
[Hellen (1986)] such as sharp edges, curved sides and surfaces and multiply-connected regions. This
element has been widely used for elastic analysis and later extended for material and geometric non-
linearities. The element is available in the 8-node quadrilateral and 6-node triangle form which signif-
icantly aids the meshing process. The topology of the semi-loof element is depicted in Figure 1 where
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Fig. 1: Semi-loof element configuration [Irons (1976)]

1 to 6 or 8 (represented as a filled circle) are the classic nodes containing three translational DOFs u, v
and w. The local normal rotation s acts at each loof node labeled A to F or H (empty circle). They are
situated at side position ±0.57735 from the midside nodes outwards. The normal is defined in each loof
node, but they are identified to the adjacent midside node and therefore a user does not have to define a
loof node geometry. Thus nodes A and B are coupled with the midside node 4 (or 5 in a quadrilateral
geometry) so that the DOFs in midside node become u, v, w, s1 and s2. The element employs three
different shape functions [Leština (1980)]. A membrane deformation is described using isoparametric
biquadratic shape functions and a bending deformation is approximated by loof and bubble functions.
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2. Diagonalization method analysis and design

2.1. HRZ scheme

Also called diagonal scaling method, the essential idea of which is contained in [Hinton et al. (1976)]
where Hinton, Rock and Zienkiewicz says: “The procedure of lumping recommended in view of the
infinite possibilities offered by condition (5) is to compute the diagonal terms of the consistent mass
matrix and then scale these terms so as to preserve the total mass of the element.”

H̄i = 1 at ith node
H̄i = 0 at jth node∑
H̄i = 1

(5)

This scheme has a plenty of advantages compared to other lumping techniques. Mainly, the HRZ
scheme is able to diagonalize mass matrices of the elements which include rotational as well as transla-
tional DOFs. A modification of the procedure which ensures rotational DOFs scaling is apparent from
the algorithm description below. Another advantage of this scheme is that an assemblage of the whole
consistent matrix is not necessary – only diagonal terms are required and the implementation is per-
formed on an element level.

The HRZ procedure is as follows [Fellipa (2011)]:

1. Compute diagonal terms of the consistent mass matrix Mc.

2. Determine the element mass me.

3. For each coordinate direction, select the DOFs – translational and rotational – which contribute to
the motion in the respective direction.

4. Segment these selections into sub-selections of the rotational and translational DOFs.

5. Sum all the terms of the each translational sub-selections, call this sum Si, where i is the problem
dimension.

6. Multiply all the entries in the ith selection (step 3) by the me/Si for all i coordinate directions.

2.2. Conservation of the moment of inertia

The HRZ lumping method conserves only the mass of the element but no moment of inertia [Fellipa
(2011)]. This was a motivation for the modification of the HRZ algorithm to conserve the element rota-
tional inertia as well.

The algorithm is based on the idea to calculate three rotational kinetic energies for the consistent
mass matrix induced by a set of three orthogonal angular velocity vectors (Figure 2). What follows is
the execution of the HRZ lumping process on the translational DOFs and a calculation of the kinetic
energy induced by the same group of angular velocities. In the last step the angular kinetic energies
are compared and correction coefficients for rotational DOFs are computed in order to preserve the total
moment of inertia.

The basic input for the created algorithm is a consistent mass matrix of the element, coordinates
of the nodes and also the information about DOFs in every node. In this example vectors describing
translational and rotational DOF position were assembled manually. A definition of the three orthogonal
angular velocities uses a Miller indices notation which describes a turn of the coordinate system of the
three velocities. In general, the velocity orientation can be chosen arbitrarily but it is very useful for the
algorithm testing of this approach which allows an easy change in orientation of the input velocities.

All the computations below are performed for all of the three input angular velocities in a vector ωi

where i = 1, 2, 3 which are denoted in the source code with indices x, y and z.
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Fig. 2: Orientation of the three angular velocity vectors

Translational degrees of freedom

So as to translate the DOF scaling, it is necessary to have a consistent mass matrix. In result, the scaling
coefficient αti for the translational DOFs is computed

αti =
vt

T
i Mc vti

vt
T
i diagMc vti

(6)

where vti consists of the nodal velocities corresponding to the translation rigid body motion in directions
x, y and z. Then αti is used for the scaling of the terms on the Mc diagonal to preserve the element
mass.

Ml
t = αtPt diagMc (7)

where Pt is a distribution matrix of the components of αt = (αti) to the corresponding terms in Mc.
This scaling method is an equivalent to the classic HRZ.

Rotational degrees of freedom

In order to compute rotational kinetic energy the projection of the angular velocity vectors to the nodes
is necessary, thus the peripheral velocity in the nodes is a result of the vector product

vpij = ωi × pj (8)

where vpij is peripheral velocity caused by one of the three induced angular velocities ωi and the posi-
tion coordinates of the jth node in the global coordinate system pj . In that case, the velocities vpij are
arranged in the vector vgi which corresponds to the positions of the DOFs in the mass matrix.

The scalar product of the input angular velocities with the directions of the rotational DOFs is used
here as an angular velocity projection to the rotational DOFs
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Fig. 3: The orientation of the rotational DOFs in the semi-loof shell element

ωpij = (ωi · sj) · sj (9)

where sj is the directional unit vector of the jth rotational loof node (Figure 3) oriented from the node
with a lower number to the node with a higher one and they are tangential to the element border. Then the
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Tab. 1: Conservation of the moment of inertia

Kinetic energy [J]
Ek c (consistent) Ek l (lumped) Ek lm (lumped + modified)

x 3.25416666×10−3 5.55154715×10−3 3.67418730×10−3

y 3.25416666×10−3 5.55154715×10−3 3.67418730×10−3

z 3.11666666×10−3 4.98978214×10−3 2.48663570×10−3

Tab. 2: Conservation of the moment of inertia – error %

Error of the kinetic energy [%]
εr lumped lumped + modified
x 70.6 12.9
y 70.6 12.9
z 60.1 −20.2

vector vg of all (translational and rotational) projected velocities (peripheral and angular) is assembled
and the total kinetic energy Ek c of the consistent mass matrix can be computed as

Ek ci =
1

2
vg

T
i Mcvgi (10)

and equally for lumped mass matrix

Ek li =
1

2
vg

T
i Mlvgi (11)

where the lumped mass matrix consist of two mass matrices

Ml = Ml
t + Ml

r (12)

The first one contains only terms corresponding to the translational DOFs where αt is computed in
equation (6) and the second one Ml

r contains only terms corresponding to the rotational DOFs

Ml
r = αrPrdiagMc (13)

where Pr is a distribution matrix of the components of αr = (αri) to the corresponding terms in Mc.
To conserve kinetic energy of the element during the lumping process, the energies in (10) and (11) must
be equal Ek c = Ek l. The substitution of the equations (10) and (11) will result in

vg
T
i Mcvgi = vg

T
i Mlvgi (14)

and after another substitution with equation (12), (7) and (13) we will get

vg
T
i Mcvgi = vg

T
i αtPtdiagMcvgi + vg

T
i αrPrdiagMcvgi (15)

Equation (15) consist of three equations (i = 1, 2, 3) and only the vector αr is an unknown. In this case
αr contains eight generally different terms and (15) just three equations which can be rewritten as

Aαr = Ek c −Ek t (16)

and for αr

αr = A+ (Ek c −Ek t) (17)

where A+ denotes Moore-Penrose pseudo-inverse. Then the lumped mass matrix can be easily assem-
bled according to the equation (12).
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The system of equations (17) is over-determined, therefore pseudo-inversion has to be employed.
Then the solution of this system is accordance with the solution using the least squares method. This
method does not provide an exact solution which is impossible due to the system over-determination but
the final solution is an approximation as can be seen in Table 1. The final kinetic energies will not be
exactly the same as the ones computed from the CMM. In Table 2 there is a relative error in percentage
of the lumped and lumped + modified kinetic energy where εr is for kinetic energy of the lumped mass
matrix computed as

εr = 100 · Ek c − Ek l

Ek c
and for lumped + modified εr = 100 · Ek c − Ek lm

Ek c
(18)

It is clear that the first two kinetic energies computed from the modified DLMM are slightly larger
then the ones from CMM but the third one is smaller – precisely in compliance with the approximation
assumption mentioned above.

Fig. 4: The mass lumping process

The algorithm described above works well. The angular kinetic energy of the lumped and modified
mass matrix is preserved – considering the feasibility of the last square method. On the other hand
negative entries in the lumped mass matrix are detected. The reason for that is obvious provided that the
lumping process has been performed and the element mass has been concentrated to the nodes. If the
element mass is preserved and stored to the most outlying places – the nodes, the element moment of
inertia has to increase together with the rotational kinetic energy when the angular velocity is introduced.
In order to preserve the rotational kinetic energy, the rotational DOFs contained in the semi-loof element
have to be negative to suppress the effect of the lumping process to the moment of inertia.

2.3. Rotational degrees of freedom

The fundamental question in mass matrix lumping is the importance of the rotational DOFs. How sig-
nificant is their contribution to the kinetic energy when we work with a semi-loof shell element? In
the previous section we investigated the rotational DOF contribution in order to produce a lumped mass
matrix with the equal inertia characteristic and also described the production of negative entries. In the
Section 2.1. we explained the HRZ algorithm with the modification to deal with rotational DOFs. To use
this algorithm for a diagonalization semi-loof element, it is necessary to decide in which direction they
contribute to the translational motion. It is not easy and clear-cut to determine, and when this decision is
made the rotational DOFs are scaled without any physical reason. Therefore, let’s examine and focus on
the importance and the contribution of the rotational DOFs of the semi-loof element on the influence of
the rotational kinetic energy during the diagonalization process.

The rotational DOF influence was tested on the plate (Figure 5) of the dimensions width w = 1 mm,
height h = 1 mm, thickness t1 = 0.1 mm and t2 = 0.01 mm, mass density ρ = 7800 kg/m3 and the angular
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Fig. 5: Influence of the rotational DOFs (nel = 1 and 2)

Tab. 3: Influence of the rotational DOF – semi-loof element, thickness = 0.1 mm

Angular kinetic energy [J]
nel with rotational DOFs without rotational DOFs
1 5.936942830255×10−8 5.93694266761×10−8

2 3.926416299426×10−8 3.926416251202×10−8

4 3.42309784091590×10−8 3.42309782178395×10−8

8 3.29567308352155×10−8 3.29567307279155×10−8

velocity ω = 1 rad/s. This plate was discretized into four meshes differing in density. All four discretized
plates are displayed in Figures 5 and 6 where nel denotes the number of elements along the plate side.
In Table 3 you can see the kinetic energy of all four plates with and without considering the rotational
DOFs obtained after applying angular velocity ω for thickness t1 = 0.1 mm and in Table 4 for element
thickness t1 = 0.01 mm.

x x

z z

ω ω

-0.5 -0.50.5 0.50 0

1 1

y y

Fig. 6: Influence of the rotational DOFs (nel = 4 and 8)

It is important to realize that whether we keep the original entries on the mass matrix diagonal
corresponding to the rotational DOFs or reset the values to zero, the differences in results are almost
identical. Further information about the influence of the rotational DOFs on a semi-loof element can be
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Tab. 4: Influence of the rotational DOF – semi-loof element, thickness = 0.01 mm

Angular kinetic energy [J]
nel with rotational DOFs without rotational DOFs
1 5.930478568835×10−9 5.930478416375×10−9

2 3.920169155838×10−9 3.9201691176445×10−9

4 3.4175917166041×10−9 3.4175917069787×10−9

8 3.29194701535405×10−9 3.29194701287015×10−9

found in Figure 7 where the error is computed as

εr = 100 · |Ek l − Ek lr|
Ek l

(19)

where Ek l is the kinetic energy of the plate with a lumped mass matrix while considering the rotational
DOFs, and Ek lr is the same energy without considering the rotational DOFs.
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Fig. 7: The influence of rotational DOF on kinetic energy

The influence of the rotational DOFs on the kinetic energy of the rotating plate is almost negligible.
If the plate consists of only one semi-loof element the contribution of the rotational DOFs to the kinetic
energy is approximately 2.7× 10−6 %, and the denser the mesh the smaller the contribution.

Having established these facts, we can now omit the rotational DOFs in the diagonalization process
and keep only the original entries which come out from the consistent mass matrix, corresponding to the
variational principles as only these values have a physical reason.

3. Results and Discussion

The previous sections of this paper dealt with the difference between consistent and lumped mass ma-
trices and described the influence of this difference on the kinetic energy. It is now highly important to
prove that the kinetic energy of the plate (Figures 5 and 6) converges to the analytical solution when the
mesh contains more elements.

A technique which we already used for testing an algorithm convergence is similar to the one used in
Section 2.3. to check the influence of the rotational DOFs on the kinetic energy – the same testing plates
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with the induced angular velocity ω will also be used and those can be chosen arbitrarily. The angular
velocity ω was projected to the loof nodes direction and the result was reassembled into vector vg as
described in Section 2.2.. The kinetic energy was calculated as

Ek c =
1

2
vT
g Mcvg (20)

Figure 9 shows the kinetic energy convergence of the numerical solution using the consistent mass matrix
as well as the analytical one with the raising ratio of element width to element thickness. The error is
computed as

εr = 100 · |Ek − Ek c|
Ek

(21)
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Fig. 8: Relative error in the kinetic energy corresponding to the numerical solution with CMM and
DLMM – convergence test
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Fig. 9: Relative error in the kinetic energy corresponding to the analytical and numerical solution
(CMM) – convergence test

where Ek is the analytical, exact, solution and Ek c the numerical one with a consistent mass matrix.
This test proved that the solution for kinetic energy of the plate modelled with semi-loof shell element
converges to the analytical solution.

Figures 8 and 10 show a convergence rate of the solution with the lumped mass matrix to the solution
with the consistent mass matrix (Figure 8) and to the analytical solution (Figure 10).

4. Conclusions

Due to the nature of the requirements related to the process of diagonalization (a universal algorithm, pre-
serving the mass, an easy implementation), a method called HRZ was ultimately selected as a frequently-
used approach that was the most suitable option for a consequent implementation. A special attention
was paid to mass matrices of elements that contained rotational degrees of freedom – such as shells.
Therefore a modification of this scaling method had to be devised not only in order to preserve the el-
ement mass, but also to preserve the moment of inertia. This method unfortunately returned negative
terms in mass matrices. They lost their positive definiteness and consequently also became useless for
an explicit solver implemented in the PMD program.

The standard HRZ method implementation involves a scaling of the rotational degrees of freedom in
the same way which applies to the translational degrees of freedom, and it has no physical basis, thus
it does not provide any solution for semi-loof shell elements in this form. This was the reason why the
interest shifted entirely on the problem of a mass matrix diagonalization with rotational degrees of free-
dom in which we determined the influence of the rotational degrees of freedom on the total moment of
inertia of the semi-loof element. The numerical test proved that the influence of the rotational degrees of
freedom was negligible. And hence the implemented algorithm was designed to leave the original values
belonging to the rotational degrees of freedom on the diagonal without any changes whatsoever.

Convergence tests were then carried out to observe the kinetic energy of the rotating element which
would confirm a convergence to the consistent matrix as well as, most importantly, a convergence to
the analytically calculated values. The implemented algorithm was tested on problems which involved
natural frequencies and the shock wave propagation.
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Fig. 10: Relative error in the kinetic energy corresponding to the analytical and numerical solution
(DLMM) – convergence test
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