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Abstract: Experimental and numerical model of a uni-directionally driven pendulum-based tuned mass
damper is presented in the paper. Stability of the motion in a vertical plane is analysed in the theoreti-
cally predicted resonance region. For the experimental part, special experimental frame is used, allowing
independent change of linear viscous damping in the both perpendicular directions. Mathematical model
respects the non-linear character of the pendulum and allows to introduce asymmetrical damping. Sensitiv-
ity of the resonance behaviour on the change of damping in both directions is studied and commented in the
paper. The stability of the system is analysed experimentally and compared with numerical and theoretical
results.
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1. Introduction

A typical tuned mass damper (TMD) has a form of a pendulum. This low cost passive device used at
tall masts and towers is very popular for its reliability and simple maintenance. However, conventional
planar linear model of such TMD is satisfactory only if the amplitude of kinematic excitation at the
suspension point is very small and if its frequency remains outside a resonance frequency domain, which
is possible only at the cost of lower efficiency of the damper. To improve the design of pendulum, a
spherical pendulum should be considered.

The present article exploits the analytical approach to the subject described in (Náprstek and Fischer,
2009) and compares it with some experimental findings. The movement of the pendulum is described in
two cartesian coordinates ξ, ζ, representing the projection of the pendulums bob to the x, y plane. The
uni-directional harmonic excitation is supposed. A specially developed experimental rig is used to anal-
yse a kinematically driven pendulum suspended from the Cardan joint. The damping can be arbitrarily
adjusted by means of two independent magnetic units attached to the frame and to the supporting axes of
rotation. The stability of the system is studied experimentally and numerically for various values of the
damping.

2. Mathematical model

The mathematical model follows from the balance of kinetic and potential energies. Using Hamilton’s
principle and assuming the small deviate from the vertical, an approximate Lagrangian system in x, y-
coordinates for components ξ, ζ can be obtained (see detailed derivation in (Náprstek and Fischer, 2009)):
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The viscous damping has been introduced in a form of the Rayleigh function and denoted as βξ, βζ
in respective directions. The natural frequency ω0 of the corresponding linear pendulum is given by
ω2
0 = g/r, where r is the suspension length of the pendulum and g is the gravitational acceleration. The

external excitation of the suspension point a(t) = a0 sin(ωt) is assumed to be harmonic.
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Fig. 1: Measured (two left plots) and computed (Eqn. (1), right pair of plots) resonance curves for sym-
metric damping βξ, βζ = 0.05. In the each pair, longitudinal movement (ξ) is on the left and transversal
response (ζ) on the right. Maximal, minimal and mean amplitudes are shown.

3. Experimental and numerical analysis

The experimental set-up is described in a high detail in (Pospı́šil et al., 2011). Fundamental eigenfre-
quency of the pendulum was measured as f0 = 0.76 Hz, i.e. ω0 = 4.8 rad · s−1, its length was 0.41m.

As can be seen in figure 1, the qualitative behaviour in the lower end of the resonance interval is
rather comparable. On the other hand, a quite significant difference can be seen in the upper part of the
studied frequency interval. It appears, that the experimental pendulum was able to follow the (less stable)
upper branch of the solution during the sweep-up much better than the numerical solution. It is worth to
mention, that for different values of damping the differences are not so dramatical.

Fig. 2: Maximal amplitude of ξ (left) and ζ (right) de-
pending on the values of damping coefficients in the
both directions βξ, βζ .

The influence of individual damping coef-
ficients on the overall response of the system
in the both directions was studied numerically.
The equation (1) was repeatedly integrated and
the maximal amplitudes in both directions was
recorded. The pair of plots in figure 2 shows
response in longitudinal direction (ξ) on the
left and transversal direction (ζ) on the right
for ω = 4.8. Values on the axes represent the
damping coefficients βξ, βζ ∈ (0.005, 0.12).
The colour map shows the distribution of the
maximal amplitudes of xi and ζ in the left and
right plot respectively. The dark colour indi-
cates negligible or small amplitude of the response, whereas the bright colour shows the high response.
The black dots in the each plot point at the discrete values of β used in simulation.

4. Conclusions

It is shown and commented in the paper, that the presence of the spatial character of the system response
does not depend significantly on the value of damping coefficient βζ . Similarly, the overall amplitude of
the response is influenced mostly by βξ (longitudinal motion) and far less by βζ . The spatial response in
the lower part of the resonance interval have higher amplitudes, but can be suppressed by smaller values
of damping βξ. The lower amplitudes in the upper part of the resonance interval need higher damping
βξ to be wiped off. The higher damping in transversal direction does not automatically mean the lower
total response.
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