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THE STUDY OF POLYMERIC HOLLOW FIBER
HEAT EXCHANGERS

I. Astrouski, M. Raudensky ’

Abstract: The polymeric hollow fibre heat exchanger (PHFHE) is a modern apparatus, using polymeric
fibres, with a small diameter of 1 mm, separating heat transfer mediums. The main goal of this work is to
study different factors affecting heat transfer in polymeric hollow fibres (diameter, length, material of
fibres, liquid temperature, and velocity) and to obtain conclusions concerning hollow fibre application.
The values of heat transfer coefficient, heat transfer rate, number of transfer units (NTUs), efficiency and
pressure drops were obtained for the applications, water-water and water-air. Delphi-based software was
designed by the laboratory especially for the computation process.
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1. Introduction and Theory

Polymer materials have a lot of advantages that are attractive for the design of heat exchange
equipment. On the other side thermal conductivity of polymer materials is low, usual between 0.1 and
0.4 W-m"-K™' which is 100-300 times lower than the thermal conductivity of metals. This considerably
limits using of polymers for heat exchange equipment because of a big magnitude of wall thermal
resistance. There are two existing approaches to overcome such disadvantage. The first one is to
increase the thermal conductivity of material by adding different fillers such as metal dusts, graphite or
carbon nanotubes. The second approach is to use thin walls between the heat transfer mediums.
Polymeric hollow-fibre based heat exchanger (PHFHE) is a type of a thin-wall polymer heat
exchanger, firstly designed by Zarkadas & Sirkar (2004) as a useful alternative for lower temperature
applications.

Standard polymeric hollow fibres have internal diameters of 0.05 — 2 mm. They can be classified
as the so-called microdevices (Herwig, 2001) and require considering additional factors during the
modelling process. However, in accordance with Zarkadas & Sirkar (2005), the axial heat conduction,
flow work and viscous dissipation are negligible for laminar flow in the polymeric hollow fibres. Two
methods of fibres heat transfer modelling were proposed: the simplified correlation suggested by
Hickman and the rigorous solution of the extended Graetz problem by Hsu (Zarkadas & Sirkar, 2004).
A simple relationship how to calculate an internal mean Nusselt number of thermal developing region
was designed also by Zarkadas & Sirkar (2005) based on the Hickman’s study and incremental heat
transfer number calculated by the Hsu’s approach.

2. Results and discussion

The input parameters were varied in order to study the influence of different factors on heat transfer
and pressure drops in polymeric hollow fibres. Moreover, several comparisons of different fibres were
applied.

In the study of liquid velocity around the fibres it was determined that the velocity of cross-flow
water around the fibres has no strict influence on heat transfer performance. Even values of heat
transfer coefficient are not so small at very low water velocities (for example 0.005 m/s). However,
this conclusion is not true for water-air application because of external wall-air thermal resistance
influencing the total heat transfer rate.
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from bigger fibres. However, the pressure drop
is much bigger for the small fibres and this is an Fig. 1: Comparison of different polypropylene
important factor limiting the application of fibers which have the constant total external
relatively small fibres. surface for water-water cross-flow

To determine the influence of wall material thermal conductivity two types of fibres were studied.
The first one was an isotactic polypropylene with a thermal conductivity & of 0.18 W-m™-K™" and the
second was an arbitrary material with a conductivity of 2 W-m™-K™" (11 times higher). It was found
that the wall thermal resistance plays the main role in the overall thermal resistance (about 55 %) in
the case of a polypropylene application. The opposite situation exists in the case of a material thermal
conductivity of 2 W-m"-K™" where the wall resistance has a minimal influence on total resistance.
Moreover, it was found that an increase of material conductivity 11 times higher (from 0.18 to 2 W-m’
K™") gives approximately two times bigger linear heat transfer coefficient.
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obtain required heat transfer capacity. On the other Fig. 2: Three diameters of fibers
side the small fibres (outside diameter of 0.4 mm) have comparison for constant efficiency
bigger values of overall heat transfer coefficients and (£ = 53%)(0.8 mm length 1.4 m, 0.6 mm
smaller values of the required surface. length 0.8 m and 0.4 mm length 0.4 m)

3. Conclusions

The factors influencing heat transfer of the polymeric hollow fibres with respect to cross-flow water-
water and water-air application were theoretically studied. The conclusions and comparisons done
show the tendencies of the heat transfer existing in the polymer fibres and can help to choose adequate
fibres and flow conditions.
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