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Abstract: The polymeric hollow fibre heat exchanger (PHFHE) is a modern apparatus, using polymeric 
fibres, with a small diameter of 1 mm, separating heat transfer mediums. The main goal of this work is to 
study different factors affecting heat transfer in polymeric hollow fibres (diameter, length, material of 
fibres, liquid temperature, and velocity) and to obtain conclusions concerning hollow fibre application. 
The values of heat transfer coefficient, heat transfer rate, number of transfer units (NTUs), efficiency and 
pressure drops were obtained for the applications, water-water and water-air. Delphi-based software was 
designed by the laboratory especially for the computation process. 
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1. Introduction and Theory 

Polymer materials have a lot of advantages that are attractive for the design of heat exchange 
equipment. On the other side thermal conductivity of polymer materials is low, usual between 0.1 and 
0.4 W·m-1·K-1 which is 100-300 times lower than the thermal conductivity of metals. This considerably 
limits using of polymers for heat exchange equipment because of a big magnitude of wall thermal 
resistance. There are two existing approaches to overcome such disadvantage. The first one is to 
increase the thermal conductivity of material by adding different fillers such as metal dusts, graphite or 
carbon nanotubes. The second approach is to use thin walls between the heat transfer mediums. 
Polymeric hollow-fibre based heat exchanger (PHFHE) is a type of a thin-wall polymer heat 
exchanger, firstly designed by Zarkadas & Sirkar (2004) as a useful alternative for lower temperature 
applications. 

Standard polymeric hollow fibres have internal diameters of 0.05 – 2 mm. They can be classified 
as the so-called microdevices (Herwig, 2001) and require considering additional factors during the 
modelling process. However, in accordance with Zarkadas & Sirkar (2005), the axial heat conduction, 
flow work and viscous dissipation are negligible for laminar flow in the polymeric hollow fibres. Two 
methods of fibres heat transfer modelling were proposed: the simplified correlation suggested by 
Hickman and the rigorous solution of the extended Graetz problem by Hsu (Zarkadas & Sirkar, 2004). 
A simple relationship how to calculate an internal mean Nusselt number of thermal developing region 
was designed also by Zarkadas & Sirkar (2005) based on the Hickman’s study and incremental heat 
transfer number calculated by the Hsu’s approach. 

2. Results and discussion 

The input parameters were varied in order to study the influence of different factors on heat transfer 
and pressure drops in polymeric hollow fibres. Moreover, several comparisons of different fibres were 
applied. 

In the study of liquid velocity around the fibres it was determined that the velocity of cross-flow 
water around the fibres has no strict influence on heat transfer performance. Even values of heat 
transfer coefficient are not so small at very low water velocities (for example 0.005 m/s). However, 
this conclusion is not true for water-air application because of external wall-air thermal resistance 
influencing the total heat transfer rate.  
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