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Abstract: The paper presents stochastic discrete simulations of concrete fracturing. The spatial material
randomness of local material properties is introduced into a discrete lattice-particle model via an autocor-
related random field generated by the Karhunen–Loève expansion method. The stochastic discrete model is
employed to simulate failure of three-point-bent beams with and without a central notch notch. The effect
of spatial randomness on the peak load and energy dissipation is studied.
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1. Introduction

It has been widely recognized that mechanical properties of materials exhibit a spatial variability. The
seminal theory of Weibull (1939) offered simple and powerful tool to determine the probabilistic distri-
bution of structural strength. However, applicability of the Weibull theory is limited to brittle structures
with no redistribution prior to the peak load. The Weibull theory lacks any length scale and rupture of
infinitely small volume directly causes failure of the whole structure. The absence of any characteristic
length scale also results in spurious infinite strength of infinitely small structures (Vořechovský, 2010).
Moreover, the Weibull theory assumes that strength of every material point is independent of its sur-
roundings. However, many structures are made of quasibrittle materials like concrete, ceramics, rocks
or ice. These structures have the ability to partially redistribute released stresses and thus their failure is
triggered by rupture of some representative volume of finite size. Also the Weibull assumption of inde-
pendence stands out against the natural expectation that the local strength fluctuate rather continuously
inside a structure.

The advantage of Weibull theory comes from the fact that the mechanics of failure does not interact
with the stochastic model – only elastic stress field is needed. Extension of the Weibull theory for finite
internal material length scale requires knowledge of changes in the stress field during the redistribution
prior to the peak load. The redistribution can be mimicked by the nonlocal Weibull theory of Bažant and
Xi (1991) and Bažant and Novák (2000), where probability of failure of material point depends not only
on its local stress but also on stress in its surroundings. Therefore, local stress is replaced by nonlocal
stress obtained by nonlocal averaging of the (local) elastic stress field (Bažant and Jirásek, 2002). The
nonlocal Weibull theory agrees for the large sizes with the local one. For intermediate structural sizes, it
predicts higher strengths than the local Weibull theory thanks to possible stress redistribution. Unfortu-
nately, in the in the case of very small structures, the theory is not applicable because the approximation
or stress redistribution by nonlocal averaging is too simplistic. Though the nonlocal averaging helps to
introduce the material internal length, it is not able to correctly reflect possible spatial correlations of
local material properties.

A laborious option of structural strength estimation is represented by stochastic failure simulations
that include proper mechanics of stress redistribution. Such a stochastic analysis can be performed
using the finite element method with a sophisticated material constitutive law (Vořechovský, 2007;
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Vořechovský and Sadı́lek, 2008). Failure of highly heterogeneous materials can also be advantageously
modeled via discrete models. These models can be deterministic: Grassl and Rempling (2008); Van Mier
and Van Vliet (2003); Bolander and Saito (1998) or stochastic: Grassl and Bažant (2009); Alava et al.
(2006). In this study, we adopt the lattice particle-model developed by G. Cusatis (Cusatis and Cedolin,
2007) for modeling of concrete fracturing. Spatial material fluctuations are introduced by modeling the
material properties as realizations of a random field.

The following Section 2. briefly describes the deterministic mechanical (lattice) model and Section 3.
elucidates how the spatial randomness is incorporated into the model. The model is then used for numer-
ical simulations of failure of notched and unnotched three-point bent beams. The results are presented in
Sections 4. (notched beams) and 5. (unnotched beams).

2. Deterministic model

Modeling of the initiation and propagation of cracks in quasibrittle materials exhibiting strain softening
has been studied for several decades. Although this is a difficult task complicated by the distributed
damage dissipating energy within a fracture process zone (FPZ) of non-negligible size, realistic results
have been achieved by several different approaches; see e.g. Bažant and Planas (1998). The present
study is based on the cohesive crack model (Barenblatt, 1962; Hillerborg et al., 1976; Bažant and Planas,
1998) called sometimes the fictitious crack model. It relies on an assumption that the cohesive stress
transmitted across the crack is released gradually as a decreasing function of the crack opening, called
the cohesive softening curve. Its main characteristic is the total fracture energy, GF – a material constant
representing the area under the softening curve.

In heterogeneous materials, the dissipation of energy takes place within numerous meso-level cracks
inside the FPZ. Direct modeling of such distributed cracking calls for representation of the material
meso-level structure. Models capable to efficiently incorporate the concrete meso-structure should be
used. For this purpose, the present analysis will be based on the discrete lattice-particle developed by
Cusatis and Cedolin (2007), which is an extension of Cusatis et al. (2003, 2006).

The material is represented by a discrete three-dimensional assembly of rigid cells. The cells are
created by tessellation according to pseudo-random locations and radii of computer generated aggre-
gates/particles. Every cell contains one aggregate (Fig. 1a,b). The cells are interconnected by set of
three nonlinear springs (normal - n and two tangential - t1, t2) placed at the interfaces between the cells,
representing the mineral aggregates in concrete and its surroundings. On the level of rigid cell connec-
tion, the cohesive crack model is used to represent cracking in the matrix between the adjacent grains.
The inter-particle fracturing is assumed to be of damage-mechanics type and is modeled using a single
damage variable ω applied to all three directions i = n, t1 and t2. Forces Fi in the springs can thus be
evaluated from their extensions ∆ui by

Fi = (1− ω)ki∆ui (1)

where ki is elastic spring stiffness. The damage parameter ω depends on ∆ui and on the previous loading
history of each connection. For a detailed description of the connection constitutive law or other model
features, see Cusatis and Cedolin (2007). The confinement effect (present in the full version of the
model) is neglected here as it was estimated that confinement does not play any important role in the
studied type of experiment.

Beams of depths D = 300 mm, span-depth ratio S/D = 2.4 and thickness t = 0.04 m, were
modeled. The maximal aggregate diameter was 9.5 mm. The minimal grain diameter was selected
as 3 mm. Aggregates’ diameters within the chosen range were generated using the Fuller curve. The
parameters of the connection constitutive law, which were mostly taken similar to those in Cusatis and
Cedolin (2007), were: matrix elastic modulus Ec = 30 GPa; aggregate elastic modulus Ea = 90 GPa;
meso-level tensile strength σt = 2.7 MPa; meso-level tensile fracture energy Gt = 30 N/m; meso-level
shear strength σs = 3σt = 8.1 MPa; meso-level shear fracture energy Gs = 480 N/m; meso-level
compressive strength σc = 42.3 MPa; Kc = 7.8 GPa; α = 0.25; β = 1; µ = 0.2; nc = 2.

To save computer time, the lattice-particle model covers only the region in which cracking was
expected. Surrounding regions of the beams were assumed to remain linear elastic and were therefore
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Fig. 1: a) One cell of the lattice-particle model and b) its section revealing the aggregate. c) Geometry
of the beams simulated in three-point-bending.

modeled by standard 8-node isoparametric finite elements. The elastic constants for these elements
were identified by fitting a displacement field with homogeneous strain to displacements of particle
system subjected to low-level uniaxial compression. The macroscopic Young’s modulus and Poisson
ratio were found to equal Ē = 34.7 GPa and ν̄ = 0.19. The finite element mesh was connected to the
system of particles by introducing interface nodes treated as auxiliary zero-diameter particles (Eliáš and
Bažant, 2011). These auxiliary particles have their translational degrees of freedom prescribed by shape
(or interpolation) functions of the nearest finite element. The rotations of the auxiliary particles were
unconstrained.

3. Stochastic model

In the described discrete model, we assign material properties of each inter-particle connection according
to a stationary autocorrelated random field. The value of the c-th realization of the discretized field at
spatial coordinate x will be denoted Hc(x). For a given coordinate x0, H(x0) is a random variable
H of cumulative distribution function (cdf) FH(h). Since we work with stationary random fields, the
cdf FH(h) is identical for any position x0. Recent studies by Bažant and co-workers (Bažant and Pang,
2007; Bažant et al., 2009) showed that, when H represents strength of a quassibrittle material, FH(h)
can be approximated by a Gaussian distribution onto which a power-law tail is grafted from the left at
a probability about 10−4–10−3.

FH(h) =





rf

(
1− e−〈h/s1〉m

)
0 ≤ h ≤ hgr (2a)

FH(hgr) +
rf

δG
√

2π

∫ h

hgr

e−(h−µG)2/2δ2Gdh h > hgr (2b)

where 〈x〉 = max(x, 0), s1 = s0r
1/m
f , m is the Weibull modulus (shape parameter) and s0 is scale

parameter of the Weibull tail, µG and δG are the mean value and the standard deviation of the Gaussian
distribution that provides the Gaussian core. The Weibull-Gauss juncture at point at hgr requires that
that (dFH/dh)|h+gr = (dFH/dh)|h−gr . rf is a scaling parameter normalizing the distribution to satisfy
FH(∞) = 1. The distribution has in total 4 independent parameters.

The spatial fluctuation of the field is characterized through an autocorrelation function. It determines
the spatial dependence pattern between the random variables at any pair of nodes. The correlation co-
efficient ρij between two field variables at coordinates xi and xj can be assumed to obey the squared
exponential function:

ρij = exp

[
−
(‖xi − xj‖

d

)2
]

(3)

It brings a new parameter d called the autocorrelation length.

To digitally simulate the stationary random field described by the random variable cdf FH and cor-
relation length d in the discrete model, we need to generate N realizations of the discretized random
field H0(x), H1(x), . . . , HN−1(x) at the facet centers of the model. This is achieved using the
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Fig. 2: Left: one realization of the autocorrelated random field H on a grid of spacing d/3 for d =
80 mm (top) and d = 40 mm (bottom). Right: realization of the field H at the element centers of the
lattice-particle model.

the Karhunen–Loève expansion based on the spectral decomposition of covariance matrix C, where
Cij = ρij . This procedure decompose the correlated Gaussian variables Ĥ(xi) into independent stan-
dard Gaussian variables ξk that are easy to generate. c−th realization of the Gaussian random field
Ĥ

c
(x) is then obtained using K standard Gaussian random variables by the following expression

Ĥ
c
(x) =

K∑

k=1

√
λkξ

c
kψk(x) (4)

where λ and ψ are the eigenvalues and eigenvectors of the covariance matrix C. The value K is the
number of eigenmodes/variables considered. In practice, it suffices to employ only a reduced number
of eigenmodes K � order of C. In particular, K can be selected such that

∑K
k=1 λk corresponds to

about 99% of the trace of the covariance matrix C (Vořechovský, 2008). The vectors of independent
standard Gaussian variables ξ are generated by Latin Hypercube Sampling using the mean value of each
subinterval. The spurious correlation of the variables is then minimized by reordering theirK realizations
(Vořechovský and Novák, 2009).

A non-Gaussian random field can be generated by isoprobabilistic transformation of the underlying
Gaussian field as

Hc(x) = F−1H (Φ(Ĥ
c
(x))) (5)

Such a transformation, however, distorts the correlation structure of the field. Thus, when generating
Gaussian field Ĥ , the correlation coefficients must be modified (Vořechovský, 2008). This is here per-
formed using the approximate method of HongShuang et al. (2008).

The realizations of the random field need to be evaluated for every shared facet (inter-particle bond)
of the discrete mechanical model (at its center). This can be computationally extremely demanding for
a large number of facets (large covariance matrix) and a short correlation length d (many eigenvalues
needed, large K). We therefore adopted the expansion optimal linear estimation method - EOLE (Li
and Kiureghian, 1993), which can significantly reduce the time of random field generation. Instead of
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Fig. 3: Load-deflection curves for simulations of TPB beams with notch.

the facet centers, the random field is initially generated on a regular grid of nodes with spacing d/3 (see
Fig. 2). The values of the random field at the facets are then obtain from expression

Ĥ
c
(x) =

K∑

k=1

ξck√
λk
ψTkCxg (6)

where λ and ψ are now eigenvalues and eigenvectors of the covariance matrix of the grid nodes, and
Cxg is a covariance matrix between facet center at coordinates x and the grid nodes. After the Gaussian
random field values at facet centers are obtained by EOLE (Eq. 6), they need to be transformed to the
non-Gaussian space by Eq. 5.

Besides the significant time savings, another advantage of using EOLE is that one can simply use
the same field realization for several different granular positions. By keeping the c-th realization of
decomposed variables ξc unchanged, the field realization can be adapted for any configuration of the
facets in the discrete model.

Structural strength of a quasibrittle material is typically governed by two important material proper-
ties, namely the material strength and fracture energy. Realistic fracture models should therefore incor-
porate random spatial variability of at least these two variables. It is reasonable to consider the material
strength fully correlated with the fracture energy (Grassl and Bažant, 2009). Furthermore, in the pro-
posed lattice model, we also include the shear strength fs and mode-II fracture energy Gs, which are
again assumed to fully be correlated to the tensile strength ft and mode-I fracture energy Gt, respec-
tively. Assuming identical coefficient of variation (cov), we can use the same realizations of the random
field to generate values of material strengths and fracture energies. For X substituted by any of the four
mentioned mechanical properties, we can write

X(x) = X̄H(x) (7)

where X̄ stands for mean value of the particular property. The mean value of the (field) random variable
H has to equal 1.

In this study, the following parameters of the Weibull-Gauss grafted distribution (Eq. 2a) were used:
m = 24; s1 = 0.486 MPa; hgr = 0.364 MPa; δG = 0.25. These values provide overall mean value
µH=1; standard deviation δH ≈0.25 and grafting probability FH(hgr) ≈ 10−4. Two correlation lengths
d were considered: a shorter length d4 = 40 mm (according to Grassl and Bažant (2009)) and a longer
length d8 = 80 mm (according to Vořechovský (2007)). The computation is performed with N = 24
realizations of the random field for each correlation length.

4. Simulations of bending of notched beams

The first set of beams (depthD = 300 mm, span S = 2.4D, thickness t = 40 mm) loaded in three-point-
bending were modeled with a central notch up to 1/6 of its depth. Ten deterministic simulations were
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Fig. 4: Realizations of random field H (left) and corresponding damage patterns developed in bent
notched beams at the peak force (middle) and after the load dropped to 1/3 of its maximum (right).

computed. These simulations exhibit a certain scatter because of the pseudo-random granular positions
differing for each realization. For both correlation lengths 40 and 80 mm, 24 simulations with spatial
material randomness were performed. All the simulations were terminated when the magnitude of the
loading force dropped to 1/3 of the maximal reached load Fmax. To ensure numerical stability in the
presence of softening, the simulations were controlled by prescribing an increase of the crack mouth
opening displacement (CMOD) in every step.

The notch present in the model induces a stress concentration at the notch tip. Therefore, high stresses
occur only in a small area above the notch tip. Therefore, a crack initiates and propagates always from
the notch tip. In stochastic calculations with rather large correlation length, local strength fluctuations
within the region of high-stresses diminishes because of the imposed spatial correlation. Thus, the peak
load Fmax depends mostly on a single value of the random field realization at the notch tip location. In
other words, a random field with correlation length greater than the length/width of FPZ can be, in the
vicinity of the crack tip, viewed as a random constant – random field becomes a random variable at that
region.

The obtained load-deflection curves are shown in Fig. 3. The figure also shows the maximal loads
Fmax in its upper left corner. The effect of the spatial strength fluctuations on the mean value of maxi-
mum load is negligible. The mean value of Fmax is, for the deterministic calculation, µd = 11.3 kN and,
for stochastic simulations with d = 40 and 80 mm µ4 = µ8 = 11.0 kN. However, the standard devia-
tions of the peak load are significantly influenced by the material randomness. The standard deviation
of deterministic calculations (given solely by random aggregate position) is δd = 0.4 kN. Significant
increase in the standard deviation is observed for both correlation lengths: δ4 = 1.5 kN (d = 40 mm)
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and δ8 = 1.8 kN (d = 80 mm). Since the maximal load of the beam is given by local meso-level strength
of a small area above the notch tip, we believe that the fluctuation rate does not influence the standard
deviation (unless it is so small that material parameters vary significantly inside the FPZ).

For several selected realizations, the computed damage patterns (damage parameter ω from Eq. 1) at
the peak load and at the termination of the simulations are showed in Fig. 4 together with the correspond-
ing random field realization. Even though one can notice that the crack is slightly attracted (repelled) by
areas of low (high) strength, the macrocrack trajectory is similar to the deterministic case (dictated by
the singular stress field).

In order to compare energy dissipation in the beams, we need to determine simulation stages where
the same portion of the ligament has already been damaged. Therefore, we select a stage when equivalent
crack lengths (according to LEFM) are equal. Thus, all the models should have at that (reference) stage
the same (reference) compliance, chosen as 1/45 mm/kN (Fig. 3). The depth of specimen was divided
into horizontal stripes of depth s (Fig. 1c). All the energy dissipated at inter-particle contacts within
a specific stripe was summed into variable Gd. One can normalize that energy by ligament area as
gd = Gd/st. The mean values and standard deviations of gd are plotted in Fig. 5 for every stripe at the
peak load and at the reference compliance stages. The figure confirms that the mean energy dissipation
in notched tests does not change when the spatial material randomness is applied. Similarly to the peak
force behavior, standard deviations of dissipated energy increase when randomness is present.

5. Simulations of bending of unnotched beams

The second simulation set focused on bending of unnotched beams where cracks initiate from a smooth
bottom surface. Ten deterministic simulations and N = 24 simulations with random field for each
correlation length were performed. To control the simulation, one needs to find some monotonically
increasing variable, here again the CMOD was used. For unnotched beams with spatially fluctuating
meso-level strength, the location of the macrocrack and thus the position of the crack mouth is not
known in advance. Therefore, several short overlapping intervals were monitored simultaneously and
the controlling CMOD was chosen to be the maximum one over them. Note, that other possibility of
controlling variable might be the total energy dissipation in the specimen (Gutiérrez, 2004).
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Fig. 7: Load-deflection curves for simulations of TPB beams without notch.

The variations in position of the crack mouth of the macrocrack are documented in Fig. 6. The
Figure demonstrates the fundamental difference between notched and unnotched simulations. When no
notch is present, the high-level stress region is much larger, located along the bottom central part of the
specimen. Material strength and fracture energy fluctuate within the region and allow the macrocrack
to “choose a weak spot” to initiate from. The higher is the distance form the midspan, the lower tensile
stress appears. In the process of crack(s) formation, the stress field with a certain ability of redistribution
increases towards the barrier (randomly varying strength and energy). The crack would start far from the
midspan only when the material strength (and energy) of all points closer to the midspan is higher than
in the surrounding. It is thus expectable (and confirmed by Fig. 6) that short correlation length, resulting
in fluctuations that generate the weak spots more frequently, shrinks the zone where the macrocrack
initiates. Indeed, the initiation zone for correlation length d = 80 mm is wider than for d = 40 mm.

Load deflection curves obtained from all the performed simulations are plotted in Fig. 7. The upper
left corner shows the mean values and standard deviations of the peak load Fmax. The more fluctuating
is the local strength, the weaker spot is statistically present and thus the lower is the mean value: µd =
22.4 kN (deterministic), µ8 = 17.0 kN (d = 80 mm), µ4 = 16.2 kN (d = 40 mm). The standard
deviation of the maximal force is low for the deterministic set, where δd = 0.6 kN (covd=2.7%). For
the correlation length 80 mm, it increases rapidly to δ8 = 3.5 kN (cov8=21%). When the fluctuation
rate increases more (d = 40 mm), the standard deviation of Fmax decreases back to δ4 = 2.1 kN
(cov4=13%). This trend simply comes from the fact that the standard deviation of the local strength in
the weakest spot inside some fixed region decreases with decreasing correlation length. Theoretically,
the maximal standard deviation of Fmax should be obtained for d ≈ ∞ (a situation when the random
field can be represented by a random variable – a random constant over the specimen volume).

Fig. 8 presents several selected realizations of the random fieldH and the computed damage patterns.
One can see that the damage patterns differ for different levels of randomness. In the deterministic case,
the damaged region at the peak load stage spans continuously the whole bottom area and the damage
intensity directly depends on the distance from the midspan. For a random local strength and local
fracture energy, the damage regions are more localized around low random field values. There is usually
one such region for correlation length d = 40 mm and several low strength regions for d = 80 mm.

To compare the energy dissipation, we again choose some reference compliance that marks stages
with the same LEFM crack length. The reference compliance now equals to 1/100 mm/kN (Fig. 7).
Contrary to results from notched simulations, summation of total energy dissipated in stripes (per unit
ligament area) is dependent on material randomness. In Fig. 9, deterministic calculations show higher
values of dissipated energy gd both for the peak force stage and for the stage at the reference compliance.
This is caused by two factors: i) the localized macrocrack propagates in stochastic simulations through
areas of lower meso-level strength and meso-level fracture energy, thus less energy is dissipated in total;
ii) Distributed pre-peak cracking outside the macrocrack occurs mostly for deterministic simulation and
thus it increases its total energy dissipation. Note that from about the middle of the specimens depth
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Fig. 8: Realizations of random field H (left) and corresponding damage patterns developed in bent
beams without notch at the peak force (middle) and after the load dropped to 1/3 of its maximum (right).
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upwards, the energy dissipation of deterministic and stochastic simulations again match each other. This
is because the crack at that depth cannot choose the weak region as it has already localized and the stress
field forces the crack to grow from the current crack tip; and no pre-peak distributed cracking takes place
there.
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Finally, we focus on a deeper analysis of the energy dissipation along the bottom surface. In the
bottom boundary stripe of width 2dmax = 19 mm, the dissipated energies (per unit ligament area) inside
and outside the macrocrack were evaluated for stages at the peak load and at the reference compliance.
These values are plotted in Fig. 10 separately for each simulation. The results document that distributed
cracking outside macrocrack in the most bottom layer after the peak is reached is close to zero. The
amount of energy dissipated outside a macrocrack is much higher for the deterministic simulations than
for those with random fields. Some of the simulations for d = 80 mm reached the value of the deter-
ministic model, which can be explained by an absence of a locally weak spot and subsequent extensive
pre-peak distributed cracking (see Fig. 8, third row). The energy dissipated inside the macrocrack at the
reference compliance is clearly higher in the deterministic case than in the stochastic one. This is due
to the positive correlation of local meso-level energy and meso-level strength at the inter-particle bonds.
Since the macrocrack propagates through locally weaker areas, it also dissipates less energy there. As-
pects related to correlation between the local tensile strength and fracture energy have been discussed by
Vořechovský and Novák (2004).

6. Conclusions

We analyzed the influence of material spatial randomness on the peak load and the energy dissipation
using a discrete lattice-particle model that reflects the concrete meso-scopic structure, i.e. the aggregate
composition. The spatial material randomness was introduced by simultaneous scaling of the local meso-
level strength and fracture energy of inter-particle bonds by realizations of autocorrelated random field.
Two basic cases of three-point-bent beams were investigated: i) beams with a notch and ii) beams without
a notch (the modulus of rupture test). Numerical results generally confirm theoretical expectations.

It has been found that:

• for the simulation with a sufficiently deep notch, the crack is forced to start at the notch tip.
Therefore, the mean value of the maximal load for notched beam simulations does not change
when material spatial randomness applies. However, the standard deviation of the maximal load
increases when strength randomness is introduced. Also, the energy dissipation in deterministic
and random media exhibit the same mean but an increasing standard deviation for the random
cases.

• In the case of unnotched beams, the macrocrack initiates in a locally weaker spot.When a shorter
correlation length of material properties is applied, the weaker is statistically the initiation spot
and therefore the mean of the maximal load is lower. Standard deviations of the maximal load
increase when randomness applied, however the shorter correlation lengths lead to a decrease of
the standard deviation.
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• Energy dissipated in unnotched beams is dependent on the randomness of the material. Two effects
responsible for the dependency were identified. i) Change of the dissipated energy due to corre-
lation of the local meso-level fracture energy and low meso-level strength of inter-particle bonds
through which the macrocrack propagates. Depending on the sign of the energy-strength cross-
correlation, this effect may increase or decrease the dissipated energy. For the current settings of
the model, the lower is the local meso-level strength, the lower is also the local fracture energy and
the lower is the energy dissipated inside the macrocrack. ii) The pre-peak distributed cracking has
a tendency to localize only in weaker areas and thus the material dissipated less energy outside the
macrocrack when random field is applied.
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