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Abstract: This work addresses three issues in computational modelling of contact-impact problems: i)
overviews a contact algorithm proposed by these authors, ii) local search treatment based on the mod-
ification of the Nelder-Mead simplex method, iii) discusses an algorithmic aspects of contact algorithm
in conjunction with the explicit time integration scheme. The talk closes with the presentation of several
numerical examples including the longitudinal impact of two thick plates, for which analytical solution is
available.
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1. Introduction

In the context of the finite element method, a frictionless three-dimensional contact-impact algorithm
using pre-discretization penalty formulation was proposed (Gabriel et al., 2004). The key feature of this
algorithm is that the local search and the penalty constraint enforcement are performed on the Gausspoint
level of linear/quadratic serendipity elements rather than the nodal level of a finite element mesh. The
method is shown to be consistent with the variational formulation of a continuum problem, which enables
incorporation of higher-order elements with midside nodes to the analysis. Owing to a careful description
of kinematics of contacting bodies when the non-linearized definition of penetration has been introduced,
the displacement increments in the course of one load step are permitted to be large. Thus, the extension
to geometrically nonlinear problems is straightforward. The algorithm proves to be robust, accurate and
symmetry preserving—no master/slave surfaces have been introduced.

In proposed algorithm the local search represents measuring penetration of a Gauss point through
the counterpart’s object surface. It is necessary first to define the outward normal and then to compute
its intersection with a curved surface, establishing distance. Although appearing trivial at first glance
the numerical solution process is far from being easy, especially when dealing with severely distorted
surfaces. In Ref. (Gabriel et al., 2010) several methods for the solution of non-linear algebraic systems
were thoroughly tested: the Newton-Raphson method, the least square projection, the steepest descent
method, Broyden’s method, BFGS method and the simplex method. The effectiveness of these methods
was performed by means of the benchmark configuration of distorted contact segment from static solution
of bending of two rectangular plates over a cylinder (Gabriel et al., 2004). The most fitting method turned
out the modification of the Nelder-Mead simplex method (Nelder and Mead, 1965), which belongs to
very popular and simple direct search technique that has been widely used in unconstrained optimization
problems.

In this paper, we focused on the performance of the Nelder-Mead simplex method for local contact
search treatment in dynamic contact-impact problem. First, the formulation of a closest point projection
problem is presented in Section 2. The idea of the Nelder-Mead method is outlined in Section 3. Finally,
the effectiveness of contact algorithm with implemented Nelder-Mead simplex method for contact search
procedure is demonstrated by test example of the longitudinal impact of two thick plates in Section 4.
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2. Formulation of the closest point projection

Let us consider the slave quadrature point ys ∈ E3 and the master segment γc. The aim of the local
contact search is to calculate the parametric coordinates ξ1, ξ2 ∈ [−1, 1] corresponding to projection
ȳ (ξ1, ξ2) ∈ E3 of the quadrature point ys (see Fig. 1).

ξ

γ

x

y

z

ξ
1 2

c

y

y s y-

y s

Fig. 1: Formulation of the minimization problem

Such a point has to satisfy
ȳ = min

y∈γc
{(ys − y) · (ys − y)} (1)

where the minimization of the inner product on E3 instead of more natural Euclidean norm has been
used. Hence, the minimized function is defined as

f = (ys − y) · (ys − y) (2)

The necessary condition for local extremum is

(ys − y) · ∂y

∂ξ1
= 0,

(ys − y) · ∂y

∂ξ2
= 0

(3)

The master segment γc is parametrized by

y (ξ1, ξ2) =
n∑

i=1

Ni (ξ1, ξ2) Yi (4)

where Ni (ξ1, ξ2) : R × R → R are the shape functions, n is the number of nodes and Yi ∈ E3 are
the global coordinates of nodes. Note that the partial derivations are constant and Eqn. (3) is system of
linear equations for linear triangular segments. If higher order elements are taken into account, Eqn. (3)
results in the system of non-linear algebraic equations. The inequality constraints |ξ1| , |ξ2| ≤ 1 for
isoparametric segment γc are not explicitly imposed. The solution of the unconstrained problem lying
outside the permissible range indicates that the quadrature point does not penetrate onto the master
segment.

3. Nelder-Mead simplex method

Let us consider the minimization of the function f (2). The points xki , i = 1, 2, 3 define the current
simplex in two-dimensional space. We set up

xkh = arg max
i

(
f
(
xki

))
, (5)
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xkl = arg min
i

(
f
(
xki

))
(6)

as the points with maximum and minimum function value, respectively. Further, we define

x̄ki =

∑2
i=1
i 6=h

xki

2
(7)

as the center of the points xki with i 6= h. At each stage xkh is replaced by a new point. In Ref. (Nelder and
Mead, 1965), three operations are applied: reflection, contraction, and expansion. In our modification
only the reflection is considered. It is defined by

x∗ = x̄ki + α
(
x̄ki − xkh

)
, (8)

where α is the reflection coefficient (positive constant). We choose α simply equal to one. Thus, the
simplex preserves regularity. In case that f(x∗) ≥ f(xkh) the vertex with second highest value is reflected
instead of xkh. When one of the vertices has still the same position, it indicates that the simplex rotates
above a local extremum. Therefore, the simplex edge length a is halved after m iterations. The number
of iteration m can be estimated by the empiric formula

m = 1.65n+ 0.05n2, (9)

where n = 2 for two-dimensional case.

4. Longitudinal impact of two plates

The longitudinal impact of two thick plates was studied, for which the analytical solution was available
(Brepta and Valeš, 1987). Despite the problem is two-dimensional one it could be used for testing
different methods for three-dimensional local contact search. The plates dimensions were: thickness
2d = 5 mm, length 2.5 mm. Young’s modulus, Poisson’s ratio and density, respectively, were E =
2.1 × 105 MPa, ν = 0.3, ρ = 7800 kg/m3. The plates made contact with initial velocity v0 = 1 m/s
prescribed at time t = 0 s (Fig. 2).

Fig. 2: Longitudinal impact of two plates

The analytical solution (Brepta and Valeš, 1987) utilizing the Laplace transform is rather complex.
The distributions of displacements and stresses are cast in the form of infinite series of improper integrals
which are evaluated numerically. For illustration, theoretical positions of wave fronts for a short time
after impact are plotted in Fig. 3. At the instant the faces of the plates come into contact there are aroused
elementary dilatation waves at all points of the contact area. The envelope of these waves is represented
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by a wave with a plane wave front, propagating in both directions at speed of dilatation waves c1. From
the boundary points A, D of the contact area emanates a reflected wave which continues propagating
in perpendicular direction to x, y plane at speed c1. Behind the dilatation wave the transversal waves
proceeds at speed c2. In the region bounded by plane wave fronts of the dilatation wave and by circular
wave fronts of the wave starting from the points A and D, the state of stress is the same as that encountered
by a longitudinal impact of half-spaces.

Fig. 3: Theoretical position of wave fronts for c1t/d = 0.56 after (Brepta and Valeš, 1987)

In view of symmetry, only one half of the plates was discretized using 100 × 100 eight-node linear
brick elements per each plate. For the integration of equilibrium equations, the central difference with
the lumped mass matrix was employed. The time step was chosen very small corresponding to the
dimensionless Courant number Co = 0.125.
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Fig. 4: Longitudinal stress distribution σ∗x along x-axis for z/d = 0

The normalized longitudinal stress distribution σ∗x = σxc1/Λv0 (Λ is Lamé’s constant) along x-axis
is drawn in Fig. 4. The results are plotted for normalized time c1t/d = 0.56 and coordinate z/d = 0, for
which no reflections from boundaries occur. Except the contact analysis a symmetric reference calcula-
tion was performed, where the longitudinal displacements of the front-end nodes of the plate were fixed.
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In Fig. 4 the contact solution is plotted by red line while the solution based on the reference calculation
is denoted by blue line. In addition, the theoretical solution corresponding to uniaxial strain condition
is plotted by the black line. Quite a good agreement between the contact and reference calculation was
observed. It should be emphasized that the symmetry of longitudinal stress distributions was perfectly
preserved in contact analysis. Thus, the capability of the Nelder-Mead simplex method implemented in
local search procedure was confirmed. It is clear that the numerical solution was influenced by dispersion
errors caused by both FE spatial and time discretization. In comparisons with the continuum solution the
speed of the longitudinal wave was slower. This fact follows from the theoretical dispersion diagrams
derived in Ref. (Plešek et al., 2010).

The normalized transversal stress distribution σ∗z = σzc1/Λv0 along z-axis is drawn in Fig. 5. In
contrast to graphs in previous Fig. 4 these distributions are strongly influenced by the longitudinal and
transversal waves reflected from the boundary of plate. Before the arrival of these waves the solution
is identical to the constant values σ∗z = −1 corresponding to a half-space impact problem. It should
be pointed out that the accuracy of analytical solution is strongly influenced by the number of terms
included in the series of improper integrals (Brepta and Valeš, 1987). The analytical solution plotted in
this paper was derived from the summation of the first 300 terms of this series.
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Fig. 5: Transversal stress distribution σ∗z along z-axis for x/d = 0.4
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