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Abstract: Some necessary implications for the time-discrete integration of finite deformations will be dis-
cussed together with particular schemes, when the geometrical structure of the space of Cauchy-Green
deformation tensors, implicitly contained in the principle of virtual power, is taken into account. All these
time-discrete schemes reflect this geometrical structure in that the actual integration of corresponding evo-
lution equation of deformation process takes place in the subset of positive-definite symmetric matrices
(with non-euclidean geometry) by definition, instead of in the linear space of symmetric matrices (with
euclidean geometry) as usual.
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The conference paper is intended to draw attention to one of consequences, namely, the time-discrete
approximation of finite deformation, when seeing a deformation process as a curve in the space of de-
formation tensors – in the sense of Noll and Seguin (2010), though using a rather different mathematical
infrastructure and, moreover, employing natural geometry of this space, inherited from the principle of
virtual power, see Fiala (2011). This approach provides exact and geometrically consistent procedure for
linearization and integration of deformation process in time variable.

STARTING POINT: From the viewpoint of finite deformations, a deformation process can be represented
pointwise by a trajectory C : I → Sym+(3,R) – the configuration space consisting of the set of all
positive-definite symmetric matrices (right Cauchy-Green deformation tensors).

Note that ∂Ct = 2FTdF ∈ sym(3,R) – the linear vector space of all symmetric matrices, where d is
the rate-of-deformation tensor (stretching) – symmetric velocity gradient, and F is deformation gradient.
One can then prove (Fiala (2011)) the following proposition.

PROPOSITION: Within small deformations, a deformation process superposed on initially strained body,
characterized by the initial deformation field C, is represented by a trajectory in the linear vector space of
all symmetric matrices sym(3,R) ≡ TCSym

+(3,R) – the tangent space to the manifold Sym+(3,R)
at a point C, i.e. the space of all vectors emanating from C.

Based on the power of internal forces, we introduce Riemannian metric on Sym+≡ Sym+(3,R) to
become a manifold with Riemannian geometry, so that we shall be able to analyse deformation process
by means of tools of differential geometry. Similarly we set sym ≡ sym(3,R). Let us consider the
stress power
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where symbol σ, as usual, stands for the Cauchy stress field, Kt for the convective stress and Pt =
C−1

t KtC
−1
t for the 2nd Piola-Kirchhoff stress.

Now, consulting the analytical mechanics, we can interpret
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as the Riemannian metric on Sym+ at the point C – a particular deformation state, and, as a consequence,
the convective stress Kt as the vector and the 2nd Piola-Kirchhoff stress Pt as the covector fields along
deformation process Ct. Interestingly – in view of the logarithmic strain log(C), a geodesic (i.e. straight
line) Ct connecting two deformation states C1 and C2 then reads

Ct = ExpC0
(tH) : = C0 exp(tC−1

0 H), (4)

where H = C0 log (C−1
0 C1), and exp, log stands for matrix exponential, resp logarithm.

Now, we can draw conclusions of the geometrical structure of Sym+ for the time-discrete inte-
gration of finite deformations. If we calculate, starting from a given deformation state of a body Ct, a
deformation increment ∂Ct, based on linearized equations and prescribed increments of external loading
and displacement, the new resultant deformation Ct+∆t then is obtained by mapping this deformation
increment to the space of all deformations Sym+ starting at the initial state.

Ct+∆t = ExpCt
(∆t ∂Ct) . (5)

In our context of Sym+, the generalized exponential map (2) adds up an increment of deformation
H ≡ ∂C0 ∈ TC0Sym

+ to the deformation C0 ∈ Sym+, so that the resulting deformation C1(H) =
ExpC0

(H) stays in the space of deformations Sym+. This would not be the case if we just set C1(H) =
C0 +H due to neglecting the “shape” of Sym+ within the linear vector space of symmetric tensors sym.

CONSEQUENCE: Resulting deformation C1(H) from adding an increment of deformation H to the
deformation C0 is given by

H 7−→ C1(H) ≡ ExpC0
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The approach mentioned above is nothing but the forward or explicit Euler’s scheme, only conditionally
stable, for evolution equation of deformation process

∂Ct = 2CtD (8)

evolving on Sym+, where D = F−1dF, which is constant along geodesics.

After having summed up basic facts related to time-discrete integration of finite deformations, we
shall first discuss the geometry of the underlying configuration space Sym+ and the properties of evo-
lution equation of finite deformation on this space. Then we introduce methods of its solution in terms
of Runge – Kutta – Munthe-Kaas (RKMK), and finely, briefly mention another closely related method –
again based on Lie group approach.

Conclusions

We analysed the evolution equation for finite deformations. We proved that instead of considering it on
the linear vector space of symmetric matrices sym, it actually evolves on its subset – the manifold of
symmetric positive definite matrices Sym+⊂ sym, so that the usual time-discrete integration schemes
are inapplicable. However, thanks to the specific geometry of Sym+, due to the principle of virtual
power, the modified RK method, namely the Runge – Kutta – Munthe-Kaas method applies. Moreover,
the closely related Magnus expansion method, based on the same geometric approach, might prove
especially useful for highly-oscillatory problems, see Iserles et al. (2000).
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