THREE-DIMENSIONAL NUMERICAL ANALYSIS OF CZECH VOWEL PRODUCTION

Petr Hájek 1,3, Pavel Švancara 1,2, Jaromír Horáček 2, Jan G. Švec 3

1 Institute of Solid Mechanics, Mechatronics and Biomechanics; Brno University of Technology; Technická 2896/2; 616 69, Brno; CZ

2 Institute of Thermomechanics; Academy of Sciences of the Czech Republic; Dolejškova 1402/5; 182 00, Prague; CZ

3 Department of Biophysics; Palacky University Olomouc; 17. listopadu 12; 771 46, Olomouc; CZ

hajek.p@fme.vutbr.cz, svancara@fme.vutbr.cz, jaromirh@it.cas.cz, jan.svec@upol.cz
Table of Contents

- Motivation
- Computational Model
 - Geometry
 - Material
 - Boundary Conditions
 - Mesh
 - Features
 - Evaluation Points
- Structural Results
- Fluid Results
- Acoustic Results
- Conclusion
- Future Work
Fluid-structure-acoustic interactions during phonation are directly linked to spatial physical effects. Can spatial model reveal new relationships between these phenomena?
Computational Model

Fluid Geometry

Vocal tract for vowel [oː], [1]

Idealized trachea

3D model

Trachea

Vocal folds

272 mm

187 mm

19 mm

85 mm
Three-dimensional Numerical Analysis of Czech Vowel Production

Computational Model

Solid Geometry

3D model

Vocal tract for vowel [o] 272 mm

Vocal folds

Trachea

M5 shaped vocal fold [2], front view

M5 shaped vocal fold [2], oblique view

11 mm

9 mm

12 mm
Computational Model

Material

<table>
<thead>
<tr>
<th>Vocal folds</th>
<th>E [Pa]</th>
<th>μ [−]</th>
<th>ρ [kg·m(^{-3})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epithelium</td>
<td>25000</td>
<td>0.49</td>
<td>1040</td>
</tr>
<tr>
<td>SLP</td>
<td>2000</td>
<td>0.49</td>
<td>1040</td>
</tr>
<tr>
<td>Ligament</td>
<td>8000</td>
<td>0.49</td>
<td>1040</td>
</tr>
<tr>
<td>Muscle</td>
<td>65000</td>
<td>0.40</td>
<td>1040</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structural damping</th>
<th>α [s(^{-1})]</th>
<th>β [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>All layers</td>
<td>116.5279</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vocal tract</th>
<th>c(_{\text{air}}) [m·s(^{-1})]</th>
<th>η [Pa·s]</th>
<th>ρ [kg·m(^{-3})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air (36 °C)</td>
<td>353</td>
<td>1.81351·10(^{-5})</td>
<td>1.205</td>
</tr>
</tbody>
</table>

Four-layered M5 vocal fold [2], oblique view
Computational Model

- **Vocal tract for vowel [o]:**
 - Open lips: Zero pressure
 - Walls: Zero flow velocity, absolute reflectivity
 - Lung pressure: $p_L = 165$ Pa

Boundary Conditions

- Trachea
- Vocal folds
- Four-layered M5 vocal fold [2], oblique view

Fixed displacement

- Fixed displacement
Model features:

- Vocal tract for **Czech vowel** [o:]
- **Fluid-structure-acoustic interaction**
- **Structural model**: large deformations and proportional damping
- **Flow model**: unsteady, compressible, viscous air for 36 °C
- **Acoustics**: obtained from solution of Navier-Stokes equations
- Vocal folds **contact** and **fluid flow separation** in glottis region
- 3D finite element model: 324650 nodes, 305664 elements

Algorithm:

1. Pushing vocal folds into the **contact** (adduction)
2. **Fluid solution**: excitation by the lung pressure p_L
3. **Structure solution**: motion of the vocal folds
4. **Deformation** of the fluid mesh

Iterations: transient solution in the time domain with increment of $1.5 \cdot 10^{-4} \text{ s.}$
Three-dimensional Numerical Analysis of Czech Vowel Production

Computational Model

Evaluation Points

- **Point m**: Near the lips
- **Point s**: Subglottal
- **Point e**: Epiglottal
- **Point g**: Glottal

Structural results evaluated on the level of point g are marked by V_{F_L} & V_{F_R}

Structural results evaluated in minimal glottal width are marked by $V_{F_L}^{\text{min}}$ & $V_{F_R}^{\text{min}}$
Structural Results

Motion of Vocal Folds

1. \(t = 0.13755 \text{ s} \)
 convergent shape
 (just before opening)

2. \(t = 0.13920 \text{ s} \)
 collateral shape
 (during opening phase)

3. \(t = 0.14010 \text{ s} \)
 divergent shape
 (during closing phase)

4. \(t = 0.14175 \text{ s} \)
 closed phase
 (immediately after closing)

Total displacements of the vocal folds in middle frontal section
Structural Results

Motion of Vocal Folds

1. t = 0.13755 s, convergent shape
2. t = 0.13920 s, collateral shape
3. t = 0.14010 s, divergent shape
4. t = 0.14175 s, closed phase

Total displacements of the vocal folds in top view
Structural Results

Vocal Folds Vibration

Displacements in x direction from facing VF nodes in minimal glottal gap

<table>
<thead>
<tr>
<th>Vibration characteristics</th>
<th>WG_{max} [mm]</th>
<th>OQ [-]</th>
<th>f_0 [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.31</td>
<td>0.49</td>
<td>180</td>
</tr>
</tbody>
</table>

WG_{max} – maximal width of glottis

OQ – open quotient (duration of open phase divided by cycle duration)

f_0 – fundamental oscillation frequency

(CHARACTERISTICS ARE EVALUATED FROM LAST TWO PERIODS)
Comparison of displacements in x direction:
- **dashed** – facing VF nodes in minimal glottal gap,
- **solid** – facing VF nodes evaluated on the level of point g

Structural results evaluated in point g are marked by VF_L & VF_R

Structural results evaluated in minimal glottal width are marked by $VF_{L\text{min}}$ & $VF_{R\text{max}}$.
Fluid Results

1. Convergent shape (just before opening)
 - $t = 0.13755 \text{ s}$

2. Collateral shape (during opening phase)
 - $t = 0.13920 \text{ s}$

3. Divergent shape (during closing phase)
 - $t = 0.14010 \text{ s}$

4. Closed phase (immediately after closing)
 - $t = 0.14175 \text{ s}$

Fluid Flow

Flow velocity in vocal tract

Total displacements of vocal folds

Flow results
Fluid Results

Subglottal pressure p_s, glottal pressure p_g and epiglottal pressure p_e (Pressure behaviors are very similar due to incomplete glottal closure)

Pressure p_m just below the lips
Fluid Results

Velocities & Glottal Flow

Subglottal velocity v_s, glottal velocity v_g and epiglottal velocity v_e

Velocity v_m just below the lips

Glottal flow rate in point g
Fluid Results

Displacement in x from minimal dist.

Pressures p_s, p_g & p_e

Velocities v_s, v_g & v_e

Phases

These are last four periods from abovementioned graphs
Acoustic Results

Vowel Spectrum

Power spectral density evaluated just below the lips, green F_1 & F_2 from [3]
Acoustic Results

Natural Frequencies

<table>
<thead>
<tr>
<th>Natural frequency</th>
<th>Frequency [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>517.63</td>
</tr>
<tr>
<td>2.</td>
<td>928.68</td>
</tr>
<tr>
<td>3.</td>
<td>2223.80</td>
</tr>
</tbody>
</table>

First pressure mode

Second pressure mode

Third pressure mode
Conclusion

Structural Results

- Oscillations of the vocal folds were stabilized after 0.05 s.
- The fundamental frequency of the vocal fold oscillation of 180 Hz corresponded to a slightly raised male or female comfortable voice [4].
- Open quotient of 0.49 fell within an interval measured on healthy subjects [5].
- Incomplete glottal closure occurred during oscillation of the vocal folds.
Conclusion

Fluid Results

- Glottal flow rate reached maxima around $0.45 \cdot 10^{-5} \text{ m}^3\cdot\text{s}^{-1}$.
- Incomplete glottal closure made behavior of subglottal, glottal & epiglottal pressures very similar.
- Maxima of glottal velocity did not exceed $20 \text{ m}\cdot\text{s}^{-1}$.
Acoustic Results

• First two natural frequencies of vocal tract were within the range of formant frequencies for the Czech vowel [o:] measured in [3].
• Frequencies of the dominant harmonic peaks were lower compared to the measured formants, probably because of the vocal fold-vocal tract interactions [6].
Future Work

• Spatial model of the fluid-structure-acoustic interaction with acoustic analogy.
• Application of a kinematic model of the vocal fold motion to the fluid-structure-acoustic interaction.
Thank you for your attention.

This work was supported by Czech Science Foundation project No. 19-04477S and by project of Faculty of Mechanical Engineering, Brno University of Technology FSI-S-20-6175. Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the programme CESNET LM2015042, is greatly appreciated.
References

