DESIGN OF SEMIACTIVE SEAT SUSPENSION FOR AGRICULTURAL MACHINES

Zbyněk Strecker, Martin Zindulka, Filip Jeniš

Institute of Machine and Industrial Design
Faculty of Mechanical Engineering
Brno University of Technology

Brno, 13.11.2020
CONTENT

- Motivation
- Model
- Control algorithms
- Measurements
- Simulation results
- Conclusions

DESIGN OF SEMIACTIVE SEAT SUSPENSION FOR AGRICULTURAL MACHINES
MOTIVATION

- The need of seat suspension
 - Health aspects of operators
 - Traffic safety

- Main goal of new semiactive suspension control
 - Reduce of vibration transfer from frame to the operator’s body
MODEL

- **1 DOF Model**
 - non-linear damping
 - Response time of damper implemented

- **Performance criterium**

\[
\sigma(a_1) = \left[\frac{1}{N} \sum_{i=1}^{N} a_1^2(t)\right]^{\frac{1}{2}}
\]

- \(m = 100 \) kg
- \(k = 9000 \) N·m\(^{-1}\)

Simplified seat model and F-v dependency of semiactive damper
(https://www.firehouse.com)
CONTROL ALGORITHMS

- On/off skyhook (SH-2)
 \[F_c = \begin{cases}
 F_{c,\text{min}}(v) & \text{if } v_1 \cdot (v_1 - v_0) \leq 0 \\
 F_{c,\text{mid}}(v) & \text{if } v_1 \cdot (v_1 - v_0) > 0
 \end{cases} \]

- Acceleration driven damper control (ADD)
 \[F_c = \begin{cases}
 F_{c,\text{min}}(v) & \text{if } a_1 \cdot (v_1 - v_0) \leq 0 \\
 F_{c,\text{max}}(v) & \text{if } a_1 \cdot (v_1 - v_0) > 0
 \end{cases} \]

- Skyhook linear approximation (SH-L)
 \[F_c = \begin{cases}
 F_{c,\text{min}}(v) & \text{if } v_1 \cdot (v_1 - v_0) \leq 0 \\
 \text{sat} \left(\frac{a \cdot F_{c,\text{max}}(v) \cdot (v_1 - v_0) + (1-a) \cdot F_{c,\text{max}}(v) \cdot v_1}{v_1 - v_0} \right) & \text{if } v_1 \cdot (v_1 - v_0) > 0
 \end{cases} \]
DESIGN OF SEMIACTIVE MAGNETORHEOLOGICAL DAMPER

- **MR damper**
 - Based on LORD RD-1005-3
 - Fast response time (up to 1.5 ms)
 - Stroke 44 mm
Non linear damping -> results are dependent on the excitation signal

Measured signals by IMU
- Vertical acceleration of frame
- Vertical acceleration of seat

Measured values on John Deere 6110M
- Frame: 3-6 m·s\(^{-2}\)
- Seat 1–2,5 m·s\(^{-2}\)
RESULTS

<table>
<thead>
<tr>
<th>Response time (ms)</th>
<th>Standard deviation of seat – acceleration (m·s(^{-2}))/position (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SH-2</td>
</tr>
<tr>
<td>20</td>
<td>0,289/1,94</td>
</tr>
<tr>
<td>10</td>
<td>0,265/1,75</td>
</tr>
<tr>
<td>5</td>
<td>0,254/1,67</td>
</tr>
<tr>
<td>1,5</td>
<td>0,248/1,62</td>
</tr>
<tr>
<td>Passive suspension</td>
<td>0,339/2,81</td>
</tr>
<tr>
<td>Excitation signal</td>
<td>0,982/2,31</td>
</tr>
</tbody>
</table>
RESULTS

DESIGN OF SEMIACTIVE SEAT SUSPENSION FOR AGRICULTURAL MACHINES
CONCLUSIONS

- Real excitation signals used for simulations
- Model with implemented non linear damping and time response
- Semiactive algorithm improves vibroisolation
 - 26.8 % vibration reduction for on/off skyhook
 - 29.5 % vibration reduction for Skyhook linear approximation
 - 29.2 % vibration reduction for Acceleration driven damping
- Short response time of damper improves the performance
- Future work
 - Experimental stand for measurement of seat vibrations in the laboratory
 - Design of control unit
 - Manufacturing of the damper
THANK YOU FOR YOUR ATTENTION

Zbyněk Strecker

strecker@fme.vutbr.cz