ANALYSIS OF INFLUENCE OF MODEL INPUT PARAMETERS ON ASH FOULING RATE PREDICTED BY CFD

Ing. Jiří Strouhal
Ing. Tomáš Juřena, Ph.D.
doc. Ing. Zdeněk Jegla, Ph.D.
Particulate matter fouling of combustion facilities

- One of the most severe problems of combustion of biomass or solid alternative fuels
- Little experience from combustion in industrial facilities
- Necessity for flexible models → CFD modelling

CFD simulations of fouling

- Fouling is a complex phenomenon
- Flue gas chemistry, contact mechanics, heat transfer, turbulent flow, boundary layer flow
- Strong dependence on empirical data
- Initial conditions – data from industrial boilers, laboratory experiments, combustion simulations
Models of particulate matter fouling

Critical viscosity models, molten fraction models
• Sticking criterion based on viscosity or fraction of molten mass of ash particle
• Empirically given dependence between viscosity/molten fraction, temperature and chemical composition

Critical velocity models
• Considering particle composition, temperature, impact velocity and forces acting on a particle
• Sticking criterion usually based on the energy or force balance
• More universally applicable
• Material properties of ash components are often required
Implemented fouling model

• Solid spherical particles + clean flat surfaces
• The sticking probability P determined from the force balance

\[
P = \begin{cases}
1, & F_{VW} + F_g \sin \theta \geq F_{el} \\
0, & \text{otherwise}
\end{cases}
\]

Gravitational force
\[
F_g = \frac{1}{6} \pi d_p^3 \rho_p
\]

Van der Waals force
\[
F_{VW} = B \frac{d_p}{6\delta^2}
\]

Elastic rebound force
\[
F_{el} = G \left(\frac{d_p}{d_{ref}} \right)^n d_p^2 |v_{i,n}|^{1.2}
\]

• No energy loss in case of particle rebound
• 5 parameters: B, δ, G, n, d_{ref}
• Reference diameter d_{ref} chosen as a tested parameter
Simulated facility

- Rotary kiln + flue gas system
Deposition chamber

• Passive mechanical part for retaining ash particles
Heat exchanger

Design parameters

- Inlet temperature: 450°C
- Outlet temperature: 950°C
- Flue gas mass flow: 0.231 kg/s
- Flue gas density: 0.288 kg/m³
- Transferred heat flow: 142 kW

Cold water inlet

Heated water outlet

filter

bypass

deposition chamber
Simulated case

- Only the deposition chamber and simplified kiln geometry considered
- Combustion experiments not conducted yet, we used the calculated data from the design calculations and from literature
- Initial simulations → largest size fraction unable to leave the kiln → not included in further simulations

<table>
<thead>
<tr>
<th>Flue gas inlet boundary conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature: 950°C</td>
</tr>
<tr>
<td>Mass flow: 0.231 kg/s</td>
</tr>
<tr>
<td>Density: 0.288 kg/m³</td>
</tr>
</tbody>
</table>

- ANSYS® Fluent®
- Steady-state
- Turbulence flow model: Realizable k-ε, Enhanced Wall Treatment
- Particle tracking: Discrete Phase Model (DPM), Discrete Random Walk Model (DRWM), Random Eddy Lifetime

Assumed particle size distribution

- Flue gas inlet boundary conditions
 - Temperature: 950°C
 - Mass flow: 0.231 kg/s
 - Density: 0.288 kg/m³
Geometry and tested meshes

• 5 tested meshes with differently resolved boundary layer

<table>
<thead>
<tr>
<th>Number of cells</th>
<th>393651</th>
<th>458310</th>
<th>490141</th>
<th>588677</th>
<th>667559</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average y^+</td>
<td>6.92</td>
<td>6.06</td>
<td>5.74</td>
<td>1.66</td>
<td>1.14</td>
</tr>
<tr>
<td>Cells with $y^+ > 4$ [%]</td>
<td>39.77</td>
<td>21.37</td>
<td>14.23</td>
<td>0.75</td>
<td>0.08</td>
</tr>
<tr>
<td>Cells with $h < 37.25 \mu m$ [%]</td>
<td>0</td>
<td>0</td>
<td>0.069</td>
<td>0.49</td>
<td>1.03</td>
</tr>
</tbody>
</table>

• Discrete Phase Model → particle can impact surface, if its center lies in a boundary cell → boundary cell height $h >$ maximum particle radius (37.25 μm)

Unrealistic submersion

Relative values of deposition mass flows
Test of influence of model parameter value

- reference diameter d_{ref}
Application of the implemented fouling model

- Fouling simulation on mesh with 588677 cells with $d_{\text{ref}} = 17.54 \, \mu m$

Application of the implemented fouling model

Chamber efficiency

Deposition efficiency [kg/kg]

Mass flow [mg/s] vs. particle diameter [μm]

Mass flows on chamber inlet

Mass flows on chamber outlet

Application of the implemented fouling model
Application of the implemented fouling model

Deposition mass flux

$d_p = 6.0 \mu m$

$d_p = 19.5 \mu m$

$d_p = 74.5 \mu m$
Proposed improvements of current fouling model

• Energy losses of the impacting particle
• Particle transport mechanisms – thermophoresis, turbophoresis, ...
• Heterogenous or homogenous gas species condensation

• Wall/deposit surface roughness
• Impaction on powdery deposit
• Time evolution of deposit properties

• Fly ash formation
• Time evolution of fly ash properties and composition
Practical use and possible simplifications

- Direct simulations of particle impact → necessity for sufficiently resolved mesh near walls
- Concept of deposition velocities – approximation of actual particulate matter mass flow by means of boundary layer flow theory
- Standalone simulations of geometrically complex parts → fouling characteristics (impaction efficiency)

In case of using two mentioned simplifications we need to approximate value of impact velocity.

- Eulerian approach for fine particles
- Long time scales of fouling process → quasi-steady simulations
Thank you for your attention

Ing. Jiří Strouhal
Faculty of Mechanical Engineering,
Brno University of Technology, Technická 2896/2; 619 69, Brno, CZ,
E-mail: strouhal@fme.vutbr.cz

Ing. Tomáš Juřena, Ph.D.; doc. Ing. Zdeněk Jegla, Ph.D.
Faculty of Mechanical Engineering,
Brno University of Technology, Technická 2896/2; 619 69, Brno, CZ,
Aknowledgement
The presented work has been supported by Technology Agency of the Czech Republic (TACR) through the project National Centre for Energy (TN1000007) “A complex approach to recovery of waste for energy and flue gas cleaning".