
3 Illustrative example

We present a simple example of observations from a mixture of normally distributed random

variables where the observed data coincide with the random effect whose unknown probability

distribution is the object of the Bayesian inference. In this case, the densities 𝑔𝜃 are assumed to

be Gaussians with unknown mean values μ and covariance matrix Σ. The base distribution 𝑃0 is

assumed to be the normal-inverse-Wishart distribution which is conjugate prior distribution for

(μ, Σ) and has its own four parameters. Multiplying this prior density by the normal likelihood

gives a posterior density of the same family, which fundamentally simplifies the actual

computations [4]. The inference is focused on the marginalized posterior distribution 𝑝 𝜽1:𝑛 𝒙1:𝑛
since the infinite-dimensional P is integrated out with a help of Polya urn representation of the

Dirichlet process [9]. The posterior samples can be obtained almost directly by Gibbs sampling.

The estimated density function in a comparison with the true density and observations is

depicted in Fig. 2.

4 Conclusion

The Bayesian nonparametric methods enable to quantify uncertainties more precisely without

making restrictive assumptions about their probability distributions as it is done in the parametric

approaches, where the structure and a number of parameters of the estimated probability

density function are prescribed a priori. Specifically, properties such as multimodality or

asymmetry of the density function are usually omitted which can lead to unrealistic predictions

and then to a wrong evaluation of risks connected to the modelled system.

Usually, a limited number of observations of the uncertain effect is available and the hierarchical

model based on the Dirichlet process mixture allows to share information among these samples.

The nonparametric inference results in the density estimation of aleatory uncertainty formulated

as a weighted finite-dimensional mixture of densities with random parameters. The number of

components is determined on a basis of clustering the processed data so the parameterisation

is not fixed.

This paper gives a very brief view into the world of the Bayesian nonparametrics with a simple

illustrative example, however modelling density estimation especially in higher dimensions is not

trivial. This topic is very actual and different effective methods have been developed in this area.

Besides using the Dirichlet process mixtures, some researchers are focused on constructing

hierarchical models based on the Pólya tree [10]. Another method is based on separating

marginal and joint distribution by using copula transform [11].
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1 Introduction

For appropriate uncertainty quantification one has to distinguish between two principal types of

uncertainties, specifically, they are epistemic and aleatory uncertainties [1], see Fig. 1. The first

uncertainty type is connected to a lack of knowledge, e.g. measurement errors or a small

number of measurements. This epistemic uncertainty can be reduced by any additional

information. On the other side, there is aleatory uncertainty or variability which is irreducible.

The aleatory uncertainty represents natural variability or randomness of a considered quantity,

which arises from neglecting some problem dimension. In other words, this variability originates

from data collection, when the data are singled out e.g. from different locations or times and

modelled as a random variable.

An estimation of uncertain factors influencing behaviour of an investigated system is a crucial

task in predicting of future events. Inferring a probability distribution which is an infinite-

dimensional object is a very complex problem. Commonly applied approaches are based on

low-dimensional parameterisations of the unknown density function, traditionally they consist in

prescribing some specific parameterised family of probability density functions [2]. The

corresponding unknown statistical moments can be considered as uncertain random variables

and inferred in the Bayesian way. This approach is based on the Bayesian parametric models

whose basic feature is a fixed number of unknown parameters. The significant disadvantage of

this method is the necessity of making the strong assumption about the density function

structure. An inappropriate guess can lead to a totally misleading result, especially in the

regions of low probability which are important e.g. in reliability analysis of building structures

where the design is based on a very low failure probability.

Relaxing the density structure assumption is allowed by Bayesian nonparametric modelling

which serves to model selection and adaptation according to the available data. In order to

ensure consistency of the estimation, in other words to obtain undistorted inference results,

some prior distribution with enough large support is necessary. In the case of density estimation,

it is reasonable to use an infinite-dimensional nonparametric prior on the space of density

functions, i.e. to construct a probability model for the unknown probability distribution itself [3].

Commonly used nonparametric priors include stochastic processes or their mixtures, the

specific setting is problem-dependent. The Gaussian processes are mostly applied in nonlinear

regression problems, the mixtures of Dirichlet processes are suitable for density estimations [4].

Practically, despite the infinite dimensionality of the assumed prior, a finite dimensional

formulation is employed in the computations. The model complexity is determined on a basis of

the available data, it means that the dimensionality of the Bayesian nonparametric model can

change with a growing data set [5].

In this contribution, we focus on estimating a probability density function of random factors from

a countable number of observations with a help of the Bayesian nonparametrics allowing to

capture distribution properties such as multimodality, asymmetry or heavy-tailedness.

Specifically, the unknown but fixed probability density function is expressed by a hierarchical

model based on the Dirichlet process mixture, which enables to model a continuous density

function [6].

2 Density estimation via Bayesian nonparametrics

The most popular nonparametric method for estimating a probability distribution is a histogram,

more sophisticated is a kernel density estimation widely used by frequentists. In the Bayesian

nonparametrics, the Dirichlet process is well-known tool introduced as a suitable class of prior

distributions with available analytical formulations of posterior distributions given a sample of

observations [7]. Particularly, the Dirichlet process is a probability distribution over the set of

probability distributions, i.e. every realization of the process is a probability distribution.

Nevertheless, the samples of the Dirichlet process are of a discrete nature, which makes it

unsuitable for the density estimation of a continuous random variable. To overcome this

obstacle, a hierarchical model based on the Dirichlet process is utilized producing a mixture of

Dirichlet processes also called a Dirichlet process mixture (DPM) model [8].

Assuming a set of statistically exchangeable i.i.d. samples

𝒙1, … , 𝒙𝑛 ~ 𝐹, (1)

where ~ stands for “distributed according to” and 𝑥𝑖 ∈ 𝑹, the goal is to infer the unknown

probability density function 𝑓 as a DPM model, where

𝑓 𝒙 = σ𝑗=1
∞ 𝑤𝑗 𝑔𝜃 𝒙 𝜽𝑗 ,   (2)

which is an infinite weighted mixture of smooth probability densities from a parametric family

𝑮 = 𝑔𝜃 𝜽 ∈ 𝜣 with latent variables 𝜽. Weights 𝑤𝑗 represent a Dirichlet process and their sum is

equal to one. Considering 𝑃0 as a probability measure on the parameter space 𝜣, the DPM has

the following hierarchical structure:

𝑃 ~ DP 𝛼, 𝑃0

𝜽1, … , 𝜽𝑛|𝑃 ~ 𝑃
𝒙𝑖|𝜽𝑖 ~ 𝑔𝜃 𝒙, 𝜽𝑖 , 𝑖 = 1, … , 𝑛. (3)

A random probability distribution 𝑃 is generated by a Dirichlet process with a positive scalar 𝛼
called a concentration (or precision) parameter because it defines a spread of the prior

probability distribution 𝑃 around the base (or center) distribution 𝑃0 , which is the prior

expectation of 𝑃. A higher value of 𝛼 means a higher level of the centralization.

E. Kočková, A. Kučerová, J. Sýkora

Uncertainty quantification through 

Bayesian nonparametric modelling

CTU in Prague, Faculty of Civil Engineering, Thákurova 7, 166 29 Prague 6, Czech Republic

Fig. 2: Example of density estimation for mixture of two Gaussians 0.5N(2,1)+0.5N(10,3). Comparison of 

true and estimated probability density function based on Dirichlet process mixture of Gaussians considering 

set of 50 observations.

.

Aleatory uncertainty 

in stochastic 

material parameters

Distribution of response

Heterogeneous materialHomogeneous material

Uncertainty in mean response

Epistemic uncertainty 

in deterministic 

material parameters

Fig. 1: Uncertainties in properties of a homogeneous and heterogeneous material.


