
26th International Conference 
ENGINEERING MECHANICS 2020

Svratka, Czech Republic, November 24 - 25, 2020

Using Harmonic Balance Method for Solving Frequency 
Response of Systems with Nonlinear Elastic Foundation
Filip Zaoral, Petr Ferfecki



Introduction

▪ In practice, modeling of mechanical systems supported on an elastic foundation is a common problem in the
construction industry, mining, rail transport, etc.

▪ A mathematical description of behavior of the elastic foundation usually causes the computational model of a
mechanical system, although otherwise linear, to become nonlinear

▪ To obtain the frequency response of such system, a necessity arises to use one of the continuation methods

▪ Description of the frequency response then requires repeated solutions of the steady-state component of
vibration response for varying excitation frequency

▪ However, direct integration of nonlinear motion equations includes a solution of the transient state as well,
which in practice generally leads to a large number of integration steps and very long solution times

▪ A possible way-out is the application of the harmonic balance method, which allows for the determination of
steady-state response component directly, provided it has a periodic or quasi-periodic time course
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▲ Source: www.daibau.rs/cene/temelji_i_temeljna_ploca ▲ Source: www.rail-fastener.com▲ Source: www.justmovingaround.com/2016/07/06



Harmonic Balance Method

▼ Equation of motion of the system in time domain:

𝐌 ሷ𝐱 + 𝐁 ሶ𝐱 + 𝐊𝐱 = 𝐩𝑠 + 𝐩ℎ 𝑡 − 𝐫 𝐱, 𝑡 ; 𝐩ℎ 𝑡 = 𝐩ℎ𝑎cos 𝜔𝑡 + 𝜓

𝐀 𝜔 𝐮 = 𝐪 − 𝐛 𝐮 ; 𝐀 𝜔 = diag 𝐊,𝐀1, … , 𝐀𝑘 , … , 𝐀𝑁𝐹 ; 𝐀𝑗 =
𝐊− 𝑘𝜔 2𝐌 𝑘𝜔𝐁

−𝑘𝜔𝐁 𝐊 − 𝑘𝜔 2𝐌
;

▼ Equation of motion of the system in frequency domain:

𝐮 = 𝐜0 𝐜1 𝐬1 ⋯ 𝐜𝑘 𝐬𝑘 ⋯ 𝐜𝑁𝐹 𝐬𝑁𝐹 T; 𝐪 = 𝐩𝑠 sin 𝜓 𝐩ℎ𝑎 cos 𝜓 𝐩ℎ𝑎 𝟎 ⋯ 𝟎 T
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𝐱 𝑡 =
𝐜0
2
+

𝑘=1

𝑁𝐹
𝐜𝑘cos 𝑘𝜔𝑡 + 𝐬𝑘sin 𝑘𝜔𝑡 ;

▪ Where 𝐌, 𝐁, and 𝐊 are a mass, damping and stiffness matrix, respectively, 𝐱, ሶ𝐱, and ሷ𝐱 are a displacement,
velocity and acceleration vector, respectively, 𝐩𝑠 is a vector of static loading, 𝐩ℎ is a vector of harmonic
excitation, 𝐫 is a vector of nonlinear foundation forces, 𝐩ℎ𝑎 is a vector of amplitudes of harmonic excitation,
𝜔 is an angular excitation frequency, 𝜓 is a phase shift, and 𝑡 is the time

▪ Where 𝐀 is a dynamic stiffness matrix, vector 𝐮 contains vectors of the Fourier coefficients 𝐜0, 𝐜𝑘, and 𝐬𝑘 of
absolute, cosine and sine terms, respectively, 𝐪 and 𝐛 are a vector of linear and nonlinear forces in frequency
domain, respectively, and 𝑁𝐹 is the number of harmonic terms of the turncated Fourier series

Solution is assumed in the form of the turncated Fourier series.



Alternating Frequency-Time Scheme

𝐮 𝐱 → 𝐫 𝐱, 𝑡 𝐛 𝐮
DFTDFT−1

𝐛 = 𝐓+ 𝜔 𝐫𝐱 = 𝐓 𝜔 𝐮

▼ Obtaining actual iteration of nonlinear forces using the alternating frequency-time scheme:

▼ Linear operator of the inverse Fourier transform (DFT) has the form:

𝐓 𝜔 = 0,5 ∙ 𝟏 𝐭𝑐,1 𝐭𝑠,1 ⋯ 𝐭𝑐,𝑘 𝐭𝑠,𝑘 ⋯ 𝐭𝑐,𝑁𝐹 𝐭𝑠,𝑁𝐹 ;

𝐭𝑐,𝑘 = cos 𝑘𝜔𝑡1 ⋯ cos 𝑘𝜔𝑡𝑚 ⋯ cos 𝑘𝜔𝑡𝑁
T; 𝐭𝑠,𝑘 = sin 𝑘𝜔𝑡1 ⋯ sin 𝑘𝜔𝑡𝑚 ⋯ sin 𝑘𝜔𝑡𝑁

T
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▪ Where 𝐓 is a linear operator of the inverse Fourier transform and 𝐓+ , being the Moore-Penrose
pseudoinverse of 𝐓, is a linear operator of the direct Fourier transform

▪ Where 𝟏 is a vector of ones and 𝑁 is a number of collocation points over a period of vibration



Arc Length Continuation Method

▼ Calculation of initial guess (predictor) from arc length 𝑎 and two last solutions 𝐮𝑖−2, 𝜔𝑖−2 and 𝐮𝑖−1, 𝜔𝑖−1:

𝐮0
𝑖 = 𝐮𝑖−1 + 𝑎

𝐮𝑖−1 − 𝐮𝑖−2

𝐮𝑖−1 − 𝐮𝑖−2 T 𝐮𝑖−1 − 𝐮𝑖−2 + 𝜔𝑖−1 −𝜔𝑖−2 2
;

▼ Corrections of displacements δ𝐮j
i and excitation frequency 𝛿𝜔j

i are in j-th iteration coupled by equation:

▼ Where vectors 𝐱1 and 𝐱2 are obtained from solution of a set of equations:
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δ𝐮𝑗
𝑖 = 𝐱1 − 𝛿𝜔𝑗

𝑖𝐱2 ( 1 )

𝐀 𝜔𝑖−1 −
𝜕𝐛 𝐮𝑖−1

𝜕𝐮
𝐱1 = 𝐀 𝜔𝑖−1 𝐮𝑖−1 − 𝐛 𝐮𝑖−1 − 𝐪; 𝐀 𝜔𝑖−1 −

𝜕𝐛 𝐮𝑖−1

𝜕𝐮
𝐱2 =

𝜕𝐀 𝜔𝑖−1

𝜕𝜔
𝐮𝑖−1

𝜔0
𝑖 = 𝜔𝑖−1 + 𝑎

𝜔𝑖−1 − 𝜔𝑖−2

𝐮𝑖−1 − 𝐮𝑖−2 T 𝐮𝑖−1 − 𝐮𝑖−2 + 𝜔𝑖−1 − 𝜔𝑖−2 2

▪ Here, 𝜕𝐛 𝐮𝑖−1 /𝜕𝐮 is a matrix of partial derivatives of the vector of nonlinear forces in frequency domain 𝐛

with respect to displacement vector 𝐮 and 𝜕𝐀 𝜔𝑖−1 /𝜕𝜔 is a vector of partial derivatives of the dynamic

stiffness matrix 𝐀 with respect to angular excitation frequency 𝜔



Arc Length Continuation Method

▼ Correction of excitation frequency 𝛿𝜔𝑗
𝑖 is one of the roots 𝛿𝜔1 and 𝛿𝜔2 of quadratic equation:

𝑎1δ𝜔
2 + 𝑎2δ𝜔 + 𝑎3 = 0;
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𝐮𝑗
𝑖 + 𝐱1 − 𝛿𝜔1𝐱2 − 𝐮𝑖−1

T
𝐮𝑗
𝑖 − 𝐮𝑖−1 ;      𝐮𝑗

𝑖 + 𝐱1 − 𝛿𝜔2𝐱2 − 𝐮𝑖−1
T
𝐮𝑗
𝑖 − 𝐮𝑖−1

𝑎2 = 2 𝐮𝑖−1 − 𝐮𝑗
𝑖 − 𝐱1

T
𝐱2 + 𝜔𝑗

𝑖 −𝜔𝑖−1 ;

𝑎1 = 𝐱2
T𝐱2 + 1;

𝑎3 = 𝐮𝑗
𝑖 − 𝐮𝑖−1 + 𝐱1

T
𝐮𝑗
𝑖 − 𝐮𝑖−1 + 𝐱1 + 𝜔𝑗

𝑖 − 𝜔𝑖−1 2
− 𝑎2

▼ The root that represents forward sense of continuation can be identified from the larger of the two products:

▼ Finally, after calculating the correction of displacements δ𝐮𝑗
𝑖 from equation ( 1 ) (see previous slide), all that

remains in current iteration is to update the vector of displacements and angular excitation frequency:

𝐮𝑗+1
𝑖 = 𝐮𝑗

𝑖 + δ𝐮𝑗
𝑖;      𝜔𝑗+1

𝑖 = 𝜔𝑗
𝑖 + 𝛿𝜔𝑗

𝑖

▪ The iterative process ends when suitable convergence criteria are met



Test Problem

▼ Finite element model of the test problem:

▼ Physical parameters of the test problem:

r(x) = κ1x + κ3x
3

p = pacos(ωt) – pmParameter Symbol Value Unit
Young’s modulus 𝐸 69 ∙ 1010 Pa
Poisson’s number 𝜇 0.33 –
Mass density 𝜌 2 700 kg/m3

Mass proportional 
damping coefficient 𝛼 100 1/s

Stiffness proportional 
damping coefficient 𝛽 5 ∙ 10−5 s

Constant pressure 𝑝𝑠 5 ∙ 106 Pa
Amplitude of distributed 
excitation pressure 𝑝𝑎 1 ∙ 106 Pa

Mean value of distributed 
excitation pressure 𝑝𝑚 5 ∙ 106 Pa

Linear stiffness coefficient 
of foundation κ1 1 ∙ 109 N/m3

Cubic stiffness coefficient 
of foundation κ3 5 ∙ 1015 N/m5

Number of elements(hexahedral) 2 232
Number of nodes 3 965
Number of degrees of freedom 11 895

▼ Basic finite element mesh parameters:
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▪ A console, discretized by 3D finite elements,
excited by a pulsating pressure load and mounted
on a bilateral nonlinear elastic support, objective is
to calculate frequency response of the system

ps

ps

p = pacos(ωt) + pmps

A



Results of the test problem

▼ Frequency response of the test problem at node A (see previous slide):

B
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Results of the test problem

▼ Vibration response for excitation frequency 𝑓 = 500 Hz (at point B, see previous slide):
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Results of the test problem

▼ Frequency spectrum of the foundation forces for excitation frequency 𝑓 = 500 Hz:
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Harmonic term number k [-]

𝐫 𝐱, 𝑡 =
𝐫0
2
+

𝑘=1

𝑁𝐹
𝐫𝑘cos 𝑘𝜔𝑡 + 𝜓𝑘
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Conclusion

▪ The frequency response of a console, discretized by three-dimensional finite elements, excited by a pulsating
pressure load and mounted on a bilateral nonlinear elastic support, was investigated

▪ The arc length continuation method was used to calculate the frequency response

▪ The harmonic balance method was used to solve the steady-state vibration response at each increment of
continuation

▪ For 4 harmonic terms of the Fourier series, no significant change in the shape of the frequency response
curve was observed for the excitation frequency values from 300 Hz above, compared to the case with 8
harmonic terms

▪ The frequency spectrum of nonlinear reaction forces of the elastic foundation was also investigated

▪ Already for 8 harmonic members of the Fourier series, a significantly decreasing trend of the superharmonic
components of the reaction forces has been observed from the 4th term above
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