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Summary: The paper deals with a way of mathematical simulation of dynamic behaviour 
of car gear box model. For mathematical model assembling of rotors, differential and 
gearbox the 1D finite elements, rigid and shell finite elements are used respectively. The 
problems of dynamic stability are solved by means of  Floquet's theory.  

This paper was written as a result of research project MSM 235200003 

1.  INTRODUCTION 
 
A car gearbox can be modelled as a system consisting of several subsystems such as two rotors with 
speed gear wheels, differential and gearbox. These isolated subsystems can be represented by linear 
mathematical model with constant mass, gyroscopic+damping and stiffness matrices. For whole 
assembled mathematical model a modal synthesis method [1] can be used respecting non-linear or 
time dependent couplings connecting individual linear subsystems. The goal of this paper is to show a 
way of modelling of car gearbox containing the time dependent linear couplings in gear meshes. 
  

2. COMPONENTS OF PHYSICAL MODEL 
A scheme of a car gearbox part is depicted in fig. 1 

 

 

 

Fig.1 

 

 

 

 

 

The gearbox 
components can be modelled by three groups of elements: 
                                                      
• Doc. Dr. Ing. Jan Dupal, Tomáš Kuruc, Dept. of. Mech., University of West Bohemia in Pilsen, 
Univerzitní 22, 306 14 Plzeň, dupal@kme.zcu.cz, kury@students.zcu..cz 



a) rotors – 1D finite rotor elements, rigid wheels, massless springs and dampers (software of 
Dept. of Mech.) 

b) differential – combination of rigid body and flexible rotor elements (software of Dept. of 
Mech.) 

c) gearbox – shell and 3D elements (FEM professional software ANSYS) 

Corresponding mathematical model has a form 

(((( )))) (((( ))))[[[[ ]]]] (((( )))) (((( ))))[[[[ ]]]] (((( )))) (((( ))))tttttt cici fqKKqBBqM ˆ====++++++++++++++++ &&&  (1) 
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are mass, damping+gyroscopic and stiffness matrices of each other isolated subsystems 

respectively. (((( )))) (((( )))) (((( )))) (((( ))))tttt cc KKKBBB ˆ,ˆ
00 ++++====++++====  are time dependent damping and 

stiffness coupling matrices respectively. 

Having performed a modal analysis of the individual isolated subsystems respecting Kelvin-
Voigth damping [2] we can rewrite (1) into form 

(((( )))) (((( ))))[[[[ ]]]] (((( )))) (((( ))))[[[[ ]]]] (((( )))) (((( ))))         ,,,,    ====++++ΛΛΛΛ++++++++ΓΓΓΓ++++ tttttt cc fVxVKVxVBVx TTT ˆ&&&  (3) 

where V and ΛΛΛΛ are modal and spectral matrices of the each other isolated subsystems 
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where number of  columns of mn,RV ∈∈∈∈ is equal to sum of the respected eigenvectors of 
individual subsystems. ΓΓΓΓ  is diagonal matrix because of  proportionality. Having added a 
trivial identity 

(((( )))) (((( )))) 0xx ====−−−− tt &&  (5) 

to (3) we can rewrite both equation into compact form 

(((( )))) (((( )))) (((( )))) (((( ))))tttt fuPuN ====−−−−&   (6) 



where 
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Eq. (6) can be further rearranged into form  

(((( )))) (((( )))) (((( )))) (((( ))))tttt buAu ++++====&  (9) 

where 
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Matrix (((( )))) mmt 2,2RA ∈∈∈∈   is time periodic and has a period T . For stability recognition we use 
Floquet’s theory. It means to solve homogeneous solution of  (10) 

(((( )))) (((( )))) (((( ))))ttt uAu ====&  (11) 

with independent initial conditions. Let us suppose the existence of m2  linearly independent 
solutions (fundamental set of solutions) (((( )))) .2...,,2,1, miti ====x  A fundamental matrix 
solution can be introduced in the form of: 

(((( )))) (((( )))) (((( )))) (((( ))))[[[[ ]]]]tttt m221 ....,,, uuuU ==== , (12) 

which satisfies a condition 

(((( )))) (((( )))) (((( )))).ttt UAU ====&  (13) 

Time variable t can be replaced by Tt ++++====τ and (13) has a form 

(((( )))) (((( )))) ,UAUAU ττ
τ

====−−−−==== T
d
d

 (14) 

because of periodicity of (((( ))))tA .  Hence if 

(((( )))) (((( )))) mmtTt 2,2, RZZUU ∈∈∈∈====++++ . (15) 

If initial fundamental matrix has a form  

(((( )))) ,0 IU ====  (16) 

where mm 2,2RI ∈∈∈∈  is identity matrix, then 

(((( ))))TUZ ====   (17) 



is so called monodromy matrix, whose eigenvalues decide about stability of the system. If all 
eigenvalues lie in unit circle in Gauss plane, the system is stable otherwise the system is 
unstable. 

Proof: 

Having passed Jordan canonical transformation of  Z   

,1 JZPP ====−−−−  (18) 

where [[[[ ]]]]m221 ...,,, pppP ====  is right eigenvector matrix of the Z  and J  is Jordan’s matrix 
we can use a canonical transformation of the fundamental matrix 

(((( )))) (((( )))) 1−−−−==== PVX tt . (19) 

From (19) follows 

(((( )))) (((( )))) 1−−−−++++====++++ PVX TtTt  (20) 

and the inverse relation 

(((( )))) (((( )))) .PXV TtTt ++++====++++  (21) 

Respecting (19) relation (15) can be rewritten as 

(((( )))) (((( )))) (((( )))) .1ZPVZXX −−−−========++++ ttTt  (22) 

Substituting (22) to (21) we can write 

(((( )))) (((( )))) (((( )))) .1 JVZPPVV ttTt ========++++ −−−−  (23) 

In case J  is diagonal matrix containing eigenvalues of monodromy matrix iλ on the diagonal 

we can write relation for modal coordinates iv in N - multiple of period T  in the form  

(((( )))) (((( )))) (((( )))) (((( ))))., tNTttTt i
N
iiiii vvvv λλ ====++++====++++  (24) 

From the last relation follows the condition if ,1<<<<iλ  system is stable because  
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and vice versa. In case J is nondiagonal for example 



















====

O
3

2

1

1
λ

λ
λ

J  (26) 

follows 
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N
ii vv λ====++++      for 3≠≠≠≠i  (27) 

and 
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In both cases if  ,1<<<<iλ  the system is stable. The proof can be performed for larger Jordan’s 
cell in the similar way. 

3. NUMERICAL VERIFICATION 
 

Let us find out the angular speed unstable region of simple exhibition system depicted in fig. 2  
 
 
 
 
 
 
 

Fig. 2 
 
 
 
 
 
 
 
 

Let suppose the upper driving 
shaft has angular speed 1ω  and 

z  is the driving wheel number of teeth. The angular speed of  periodical change of tooth 
stiffness and corresponding period can be obtained in form 

.22,
1

1 ω
π
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The first ten eigenfrequencies of the system with central stiffness of teeth are as follows  
 

i  1 2 3 4 5 

[[[[ ]]]]410./ sradiΩ  0 0.0728 0.0801 0.1613 0.1737 

i  6 7 8 9 10 

[[[[ ]]]]410./ sradiΩ  0.3504 0.3969 0.7847 0.8593 1.8226 
 
The most sensitive eigenfrequency to the tooth stiffness modulation is 8Ω . Let us change 

modulation frequency in the region [[[[ ]]]]srad /7900,7800∈∈∈∈ω .  
Corresponding region of revolutions is 

[[[[ ]]]] .3060
2

,min/3.3592,2.3724
z

nrevn rev

π
ω

π
ω ========∈∈∈∈   (30) 
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