

CHARPY V-NOTCH IMPACT TEST: MODELLING AND EXPERIMENT

Lísek Michal & Kozák Vladislav*

Summary: This paper describes dynamic modelling of V-notch Charpy specimen during pendulum impact test using the explicit program LS-Dyna. Manganese cast steel considered for storage and transport container for spent nuclear fuel (ŠKODA) was selected as an experimental material. The elastoplastic behaviour was described by Johnson-Cook model and compared with experiments.

1. Úvod

Instrumentovaná rázová zkouška rázem v ohybu Charpyho tělesa je jednou z důležitých experimentálních metod pro určování základních materiálových charakteristik. Měření závislosti silačas umožňuje mimo jiné zjistit nárazovou práci, výpočet dynamické meze kluzu a kritického lomového napětí či při použití těles s trhlinou dynamickou lomovou houževnatost a dynamické Rkřivky. V současné době pro provádění této zkoušky platí následující normy: EN ISO 14556: 1999 Steel –Charpy V-Notch Pendulum Impact Test, ESIS Draft 10 Semtember 1999, Draft 9, March 2000. Detailnější informace lze nalézt v [1]. Otázkou však zůstává určení polí napětí a deformace v okamžiku porušení materiálu. Proto je nezbytné vytvořením numerických modelů chování Charpyho tělesa a jeho následné ověření experimentálními zkouškami. To pak umožní lépe poznat a pochopit chování materiálu při mezních stavech. Cílem tohoto příspěvku je zdůraznit význam zkoušek na instrumentovaném kyvadlovém kladivu a nastínit problémy, vznikající při numerickém modelování této zkoušky.

2. EXPERIMENTÁLNÍ DATA

Pro studium byla použita litá manganová ocel o následujícím složení: (hm %): 0,09C, 1,18Mn, 0,37Si, 0,01P, 0,025S, 0,12Cr, 0,29Ni, 0,29Cu, 0,03Mo a 0,028Al. Základní charakteristiky nezbytné pro následující modelování jsou uvedeny v Tab.1 a na Obr.1. Experimentální zkoušky na instrumentovaném kladivu byly provedeny dle normy ISO 14556 Steel–Charpy V-Notch Pendulum Impact Test v teplotním rozsahu od -100°C až do pokojové teploty. Za stejných podmínek byly provedeny numerická simulace. Z průběhu zkoušky byly získány informace o chování materiálu, hodnota absorbované energie, záznam síla - čas, síla – přemístění. Tyto údaje byly použity pro srovnání experimentu a numerické simulace.

Presentovaná analýza probíhala pro zvolenou teplotu, u které se předpokládá porušení na základě maximálního hlavního napětí σ_1 , tj. v oblasti malých plastických deformací (SSY-small scale yielding). Tento předpoklad vycházel z experimentálního záznamu F-t. Numerická simulaci Charpyho zkoušky pak byla provedena pro teplotu -70° C a porovnána s výsledky experimentu.

Ing. Michal Lísek, ÚFM AV ČR Brno, Žižkova 22, michal.lisek@post.cz, Ing. Vladislav Kozák, CSc., ÚFM AV ČR Brno, Žižkova 22, kozak@ipm.cz.

Celkový počet experimentálních zkoušek pro teplotu –70°C byl 13, z toho 8 bylo standardně vyhodnoceno podle normy uvedené výše. Zbývajících 5 zkoušek nebylo zahrnuto pro srovnávání s numerickým modelem. Výsledky zpracování jsou presentovány v Tab.1.

TC 1 11	1 77/11 1 /	1 1 1	~ /	1 . 1 /	, ,	1 1
Labulka	1. Zakladni	charakteristiky	urcene z	dynamicke	razove	ZKOUSKV
1 uo un u	1. Dunnuum	character ibtild y		a y numeric	Iuzove	LICCUSICY

	Fgy střední	Ugy střední	Wgy střední	U _{max-střední}	W _{max-střední}
	[KN]	[mm]	[J]	[mm]	[J]
Střední hodnota	13,53	0,465	4,02	1,347	11,91

Z experimentu bylo zjištěno, že pro testovaný materiál při teplotě -70° C je celkový čas celé expozice t= 0,00010-0,00013 s. V numerické simulaci tohoto experimentu však není modelovaná finální část. (V okamžiku psaní tohoto příspěvku jsou testovány různé typy poškození).

Obr.1: Teplotní závislost statické meze kluzu a meze pevnosti

3. NUMERICKÁ SIMULACE CHARPYHO ZKOUŠKY

Pro řešení numerické simulace byl použit program LS-Dyna, přičemž geometrii a síť byla generována programem Ansys. LS-Dyna - explicitní řešič, pro řešení dynamických problémů používá Metodu centrálních diferencí (MCD). Ta vytvoří soustavu rovnic a v rámci integrace časového kroku řeší jednotlivé rovnice postupně za sebou. Délka konvergence se odvíjí od velikosti časového kroku a velikosti elementu. Pro krátké děje je tato metoda velmi výhodná.

V současně době využíváme tento přístup při řešeni rychlých dynamických dějů. LS-Dyna v sobě zahrnuje velkou databází materiálových parametrů a pro uvedené řešení byl použit model materiálu Johnson – Cook. Ten zachycuje změnu chováni materiálu závislou na rychlosti deformace a na teplotě.

Geometrický model

Při vytváření geometrického modelu byly vstupní podmínky velmi dobře známy. Geometrie tělesa a podpor jsou dány normou ISO 14556, dále pak zatížení je dáno rázovou energií a rychlostí kladiva pro daný typ zkoušky a ta je přesně určena. V našem případě je rázová energie rovna 300 J a to odpovídá

rychlosti 5 m.s⁻¹. Jelikož v modelu bylo využito dvojnásobné symetrie těles, pak MKP model je tvořen 7726 elementy a 9602 uzly.

Johnson-Cook

Tento model popisuje elastoplastické chování materiálu závislé na rychlosti deformace. První člen rovnice (1) popisuje závislost meze kluzu na plastickém přetvoření, A-mez kluzu, B-směrnice zpevnění, n-koeficient zpevnění.

$$\sigma = (A+B.\varepsilon^{n}).(1+C.\ln\varepsilon^{p}/\varepsilon_{o}).(1-T^{m})$$
(1)

Druhý člen popisuje závislost meze kluzu na rychlosti plastického přetvoření, ε^{p} -efektivní plastické deformace, ε_{o} -deformace při $\varepsilon_{o} = 1 \text{ s}^{-1}$, C-směrnice udávající zpevnění v rozsahu $\varepsilon_{o} = 1-1.10^{5} \text{ s}^{-1}$. Třetí člen popisuje závislost meze kluzu na teplotě materiálu, m-koeficient materiálové závislosti na teplotě, homologovaná teplota T=(t-T_r)/(T_m-T_r) kde T_r-je teplota zkoušky, T_m-teplota tání daného kovu. Další vstupní parametry pro tento model jsou modul pružnosti ve smyku a specifické teplo.

Příprava vstupních dat

Jak vyplývá z rovnice (1), pro model Johnson–Cook je nezbytné získat experimentálně provedenou dynamickou tahovou zkoušku při rychlosti deformace $\varepsilon_0 = 1s^{-1}$. Protože tyto údaje nebyly známy, byl proveden přepočet dat ze statické tahové zkoušky. Pro náš případ byly tyto hodnoty zjištěny pomocí empirických vztahů podle predikce vlivu teploty na rychlosti a zatěžování na mez kluzu [4]. Tento přepočet byl již několikrát úspěšně použit a vypočtená data odpovídají předpokládanému chování materiálu.

Vztah pro určení meze kluzu:

$$R_{e}(t, \varepsilon^{*}) = R_{e}(20^{\circ}C, 10^{-3}s^{-1}) - \sigma + A \exp\left[-(t+273).(B_{1}-B_{2}.\ln\varepsilon^{*})\right]$$
(2)

Kde A, B₁, B₂, σ jsou konstanty a jsou funkcí parametru (R_e+R_m)/2. Pro výpočet meze kluzu v závislosti na rychlosti zatěžování byly použity následující hodnoty: A = 1348,5 MPa B₁ = 83,1145.10-4 B₂ = 3,788.10-4 σ = 55,5 MPa Hodnota R_e(20°C,10⁻³s⁻¹) = 261 MPa, záznam statické tahové zkoušky je na Obr.2.

Námi vypočtená a aproximovaná data pro model Johnson - Cook model vypadají takto: A = 475 MPa B = 180 MPa A = 0,3 C = 0,0458 $T_m = 200 \text{ °K}$ $T_r = 1600 \text{ °K}$ m=1 Hodnota $R_e(20^\circ\text{C},1\text{s}^{-1}) = 475$ MPa, odhadnutá dynamická tahová zkouška je na Obr.2.

4. IMPLEMENTACE DAT A ŘEŠENÍ

Po implementaci vstupních dat jsme získali řešení numerické simulace průběhu zkoušky. Výsledky byly podrobeny pečlivému porovnání s experimentálními výsledky. Zaznamenali jsme rozložení plastické deformace u kořené CVN vzorku v závislosti na čase Obr.3. Na Obr.4 je zobrazeno rozložení plastické deformace na modelu v různých časových okamžicích. Záznam napětí σ_1 pod kořenem vrubu v různých časových okamžicích je na Obr.5. Na Obr.6 je záznam normovaného hlavního napětí a plastické deformace, výsledky potvrzují oprávněnost použití teorie malých plastických deformací a možnost následného křehkého porušení. Rozložení hlavního napětí σ_1 na modelu je na Obr.7.

Obr.2: Závislost σ - ϵ pro -70°C, experiment a implementovaná náhradní křivka.

Obr.3: Rozložení plastické deformace před čelem vrubu.

Obr.4: Rozložení plastické deformace na modelu v t=0,000125 s.

Obr.5: Rozložení hlavního napětí před kořenem vrubu.

Obr.6: Závislost normovaného hlavního napětí a plastické deformace.

Obr.7 : Rozložení hlavního napětí v t=0,000125 s.

5. VYHODNOCOVÁNÍ DYNAMICKÉ MEZE KLUZU A KRITICKÉHO LOMOVÉHO NAPĚTÍ

Z hodnoty F_{gy} lze určit dynamickou mez kluzu a kritické lomového napětí pro příslušnou rychlost deformace.

$$F_{gy}=c. R_e^d$$
 případně c. $(R_e)^d$. (3)

Kde c je konstanta, která u oceli nízké a střední pevnosti má hodnotu c= 21 ± 1 mm². Vztah byl odvozen na základě experimentu [2].

Kritické lomové napětí σ_{FC} : je definováno jako lokální špička největšího hlavního napětí σ_1^{max} v malé plastické zóně před kořenem vrubu v okamžiku iniciace náhlého nestabilního lomu. Parametr σ_{FC} je funkcí mikrostruktury oceli a udává její okamžitou odolnost proti iniciací štěpným lomem. Bylo prokázáno, že hodnota σ_{FC} pro nízkouhlíkové a nízkolegované oceli nezávisí na teplotě a rychlosti zatěžování. Hodnotu kritického lomového napětí lze určit ze síly při teplotě křehkosti t_{Bv} (F_{gy}=F_m), platí zde závislost

$$\sigma_{\rm FC} = K_{\sigma} R_{\rm e}^{\rm d}, \tag{4}$$

kde K_{σ} je plastický součinitel koncentrace napětí v plastické zóně a je funkcí zátěžné síly a pro F_{gy} má hodnotu 2,2. Kritické lomové napětí σ_{FC} spolu s teplotní závislostí dynamické meze kluzu v podstatě určují polohu tranzitní křivky KV na ose teplot.

Tabulka 2: Porovnání experimentálních dat s výsledky získanými na základě numerické simulace experimentu

	Experiment	Num. Simulace.	Num. Simulace.	Num. Simulace.	
		t=0,000100	t= 0,000125	t= 0,000150	
F _{gy střední}	13,53 kN	15 kN	12,6 kN	13,35 kN	
R_e^d	644 MPa	714 MPa	600 MPa	635 MPa	
$\sigma_{\rm FC}$	1417 MPa	1571 MPa	1320 MPa	1397 MPa	
Ugy střední	0,465 mm	0,481 mm	0,605 mm	0,728 mm	
W _{gy střední}	4,02 J	4,6 J	5,8 J	7,68 J	

6. ZÁVĚR

Měření závislosti síla na čas nám umožňuje zjistit absorbovanou energii v průběhu rázu pro různé časové okamžiky a následné zjištění mat. charakteristik F_{gy} , σ_{CF} atd. Příklad srovnání záznamu závislost síly na čase experimentu a numerické simulace je na Obr.10. Vyhodnocované místo je v místě kontaktu vzorku a kladiva.

Obr.10: Porovnání závislosti síla – čas. (Červenou je označen typický průběh experimentální závislosti).

7. PODĚKOVÁNÍ

Práce byla provedena v rámci projektu 101/00/0170 Grantové Agentury České republiky.

8. LITERATURA

- 1. Holzmann, M., Dlouhý, I.: Použití instrumentovaného kyvadlového kladiva pro hodnocení houževnatosti a tranzitního chování ocelí, Zváranie 49, č. 11-12, (2000), s. 256.
- 2. Holzmann, M. Vlach, B. Man, J.: The influence of loading rate on the ductile –brittle transition and cleavage fracture stress of 2,25 Cr 1 Mo steel. In ECF 6, Fracture control of engineering structures, Vol. II, s.1705, Warley, West Midlands, U.K., EMAS, 1986.
- 3. Server, W. L.: Transaction ASME, J. Eng. Mater. Technology, 1978, s. 183.
- 4. Holzmann, M. Vlach, B. Man, J.: Predikce vlivu teploty a rychlost zatěžování na mezi kluzu konstrukčních oceli, Kovové Materiály, 6, 1986, str. 654.
- 5. Manuály LS-Dyna.