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Summary: An implementation of the Thorne–Enskog equation for the evaluation of the
thermal conductivity and viscosity of high-density fluid mixture is presented. The method is
based upon the rigid-sphere model of the fluid mixture suitably interpreted to apply to real
fluids. The procedure requires the knowledge of the transport properties of the pure compo-
nent gases at high density, the zero-density values of the transport properties both for the
pure components and for their binary mixtures, and the knowledge of the virial coefficients.
No dense mixture data are required. The computational method is tested against a body of
experimental data on thermal conductivity obtained in the Institute of Thermomechanics in
measurements on two samples of the natural gas in the temperature interval from 288 K to
360 K for pressures from 0.1 MPa to 15 MPa.
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1 Introduction

The gas industry is one of the fields where knowledge of thermophysical properties is needed
for a wide variety of applications. Areas of applications are the flow metering and process
simulations such as gas-storage simulation, the evaluation of compressor performance tests, the
design of interstage cooler and energy-flow measurements. In particular, values of the thermal
conductivity are required in the development and calibration of sensors for the measurement
of mass and energy fluxes, based on the thin-film anemometry. As the thermal conductivity
and viscosity measurements for each particular natural gas composition are not practicable,
computational methods for prediction of the transport properties of gas mixtures inevitably
should be applied.

The most advanced theoretical results for dense fluid mixtures in regions of state removed
from the critical, are those originally proposed for the viscosity by Di Pippo et al. [1] and for
the thermal conductivity by Mason et al. [2]. They are based upon application of the Thorne–
Enskog equations for the transport properties of a fluid mixture composed of N species of rigid
spherical molecules. The most recent version of that internally consistent procedure for the
evaluation of the background transport properties of dense gas mixtures has been developed by
Vesovic and Wakeham [3], [4].

In the Institute of Thermomechanics in Prague, a computer code based on the Thorne–
Enskog equation has been developed making possible predictions of viscosity and thermal con-
ductivity of multicomponent mixtures of gases from the pure component properties and some
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properties of their binary mixtures. The input properties have been collected from literature for
the main components of natural gases: methane, ethane, propane, isobutane, normal butane,
carbon dioxide and nitrogen.

2 Theory

The result of Mason et al. [2] can be written in the form

λmix = λmix(tr) + λmix(int), (1)

in which λmix(tr) denotes the contribution of the translational energy transport to the thermal
conductivity and λmix(int) denotes the contribution of the internal energy transport. The trans-
lational component of the thermal conductivity for a mixture of N components is given by the
formula of the revised Enskog theory for mixtures

λmix(tr) = − 1
det(L)
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Here ρ is the molar density of the fluid mixture, xi and xj are mole fractions, λ0
ij(tr) is the

low density thermal conductivity of a hypothetical pure gas of molecular mass 2mimj/(mi +mj)
whose molecules interact according to the real i-j interaction, and A∗

ij and B∗
ij are dimensionless

ratios of collision integrals [5].
The γij are corrections for free-path shortening in an i-j collision and are calculated from the

interaction second virial coefficients Bij . If data are lacking on Bij , the interaction parameters
can be estimated from the pure-gas γi and γj by the rigid-sphere combining rule, which yields
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The pure component quantities γi are derived from the second virial coefficients Bi of the real
gas:

γi =
6
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)
. (8)

The pseudoradial distribution functions χi [2] are calculated from the measured thermal con-
ductivity λi of the pure dense gas using the rigid-sphere relation for the thermal conductivity:
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The rigid-sphere combination rule when applied to the pure component function χi leads to the
the following explicit expression for the binary mixture χij :
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The transport of internal energy is treated exclusively as a diffusive process in the present
formulation, while the collisional internal energy transport is neglected so that the effect of the
elevated densities can be handled within the framework of the rigid-sphere model:
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Therefore, in the limit of zero density, equations (2)–(12) do not reduce to the most accu-
rate formulation of the thermal conductivity of gas mixture [6] but instead to the so-called
Hirschfelder–Eucken diffusional formula. The effect of such an approximation is not large be-
cause the contribution of inelastic collisions to the thermal conductivity of gas is typically 1–2 %.

The corresponding formulae for the viscosity are quite analogical to that of the thermal
conductivity with λi and λ0

i replaced by ηi, η0
i . As the internal degrees of freedom has no effect

on the momentum transport, λ0
i (tr) should be replaced by η0

i .

3 Implementation

In order to compute the thermal conductivity of mixtures on the basis of the above mentioned
formulae the following quantities are required: the pure-gas thermal conductivities λi at the same
molar density as the mixture, the low-density thermal conductivities λ0

i and their translational
components λ0

i (tr) for the pure gases, the second virial coefficient Bi(T ) and its first temperature
derivative for each component pure gas, and the mixture low-density parameters λ0

ij(tr), A∗
ij , B∗

ij .



In the comparisons presented here, the interaction quantities λ0
ij(tr), A∗

ij , B∗
ij and Bi(T )

have been taken from the correlations of the extended law of corresponding states [7], [8]. The
pure gas thermal conductivities for methane, ethane, propane, carbon dioxide and nitrogen have
been taken from transport property correlation schemes published, respectively, by Friend et al.
[9], [10], Younglave et al. [11], Vesovic et al. [12] and Stephan et al. [13].

4 Results

To test the ability of the procedure to predict the thermal conductivity, the computed values
have been first compared with the experimental data on the thermal conductivity of methane-
nitrogen mixture obtained by Kestin et al. [14] for three mixture compositions. The results of
our calculations, in the form of full curves, are compared with the experimental data in Fig. 1.
The calculation seems to underestimate the true value at low density which might indicate that
the principal source of the discrepancy lies in the representation of the mixture properties at low
density. On the other hand the discernible tendency for the difference to change sign at higher
densities should be ascribed to the specific features of the present procedure, that incorporate
the density dependence.
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Figure 1: The thermal conductivity of Ne–Ar mixtures at 300.65 K [14]. Comparison between
measurement and calculation; xCH4 : ◦ 0.2564, � 0.5432, 4 0.7707.

We have previously reported measurements of the influence of the density upon the thermal
conductivity for two samples of natural gases of Norwegian and Russian type [15]. The results
of the calculation of the thermal conductivity of the Norwegian natural gas are given in Fig. 2
in the form of straight plots of the thermal conductivity as a function of density, where they are
compared with the experimental data. Figure 3 shows the deviations of the predicted thermal
conductivity from the experimental values as a function of density. The deviations between
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Figure 2: Comparison of calculated (curves) and experimental (�, [15]) thermal conductivities
of the Norwegian natural gas for isotherms from 290 K to 360 K.
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Figure 3: Deviations of the experimental thermal conductivities of the Norwegian natural gas
[15] from the values predicted by the present procedure as a function of molar density; + 290
K, ◦ 300 K, ∗ 310 K, × 320 K, � 330 K, ♦ 340 K, 4 350 K, 5 360 K.



the experimental data and the prediction do not exceed ±1.6 %. The density dependence of
the thermal conductivity is generally represented rather well and the overall discrepancies are
within the combined uncertainties of the natural gas thermal conductivity data and those for
the pure-component representation employed.
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