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GLOBAL VIEW ON DYNAMICS OF IMPACT OSCILLATOR 
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Summary: Impact oscillator is the simplest mechanical system with one degree of 
freedom, the periodically excited mass of which can impact on the stop. The aim of this 
paper is to explain the dynamics of the system, when the stiffness of the stop changes from 
zero to infinity. It corresponds to the transition from the linear system into strongly 
nonlinear system with rigid impacts. The Kelvin-Voigt and piecewise linear model of soft 
impact was chosen for the study. New phenomena in dynamics of motion with soft impacts 
in comparison with known dynamics of motion with rigid impacts are introduced in this 
paper. 

1. INTRODUCTION 
The one-degree-of-freedom impact oscillator is one of the simplest strongly non-linear 

mechanical systems. It consists of an elastically suspended and periodically excited mass m, which can 
impact against a rigid stop (Fig. 1(c)). Its dynamics has been thoroughly investigated theoretically, 
experimentally and using simulation methods (see references in (Peterka and Vacík 1992) and 
(Peterka 1981)). 

The analytical and simulation solution of the impact oscillator motion uses mathematical model 
of the impactless motion (Fig. 1(a)) and a certain model of impact. Strong nonlinearity is caused by an 
additional stiffness and damping during the contact of mass with stop. The stiffness coefficient should 
lie in the interval (0, ∞ ). The left boundary value corresponds to impactless motion (Fig. 1(a)) and 
right boundary represents motion with absolutely rigid impacts (Fig. 1(c)). The behavior of the system 
motion is well known in both boundary cases. Motion of oscillator with rigid impacts is most complex, 
but theoretical analysis of periodic motions and their stability, using Newton model of impact with 
restitution coefficient R, is simplest. The Kelvin-Voigt (Fig. 2(a)) and piecewise linear (Fig. 2(b)) 
model of 'soft' impacts (Fig. 1(b)) was chosen for the explanation of development of nonlinear 
phenomena inside the mentioned stiffness interval. The notion 'soft' means that model of impact does  
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Figure 1 (a) (b)
(c)

. Scheme of transition from linear motion  through motion with soft impacts 
                into motion with rigid impacts  of one degree of freedom oscillator 
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Figure 2. Examples of force interactions during soft impacts

Figure 3. (a) (c)
                  (d)

 Regions of motions with the Kelvin-Voigt model of soft impacts -
and rigid impacts according to Newton's model of impact 
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Figure 4. Regions of motions of oscillator with peicewise linear model of soft impact



not neglect the impact duration and simulates a force interaction of impacting bodies during impact. 
Dynamics of oscillator with Hertz's quasistatic model (Fig. 2(c)) was also explored using 

numerical simulation (Půst and Peterka 2001). Figure 2(d) shows diagram of elastic, plastic and dry 
friction forces measured during the piercing of the hole in a chain link. This diagram is more 
complicated and will be used for the simulation of motion and an optimisation of system parameters of 
the real machine.  

2. REGIONS OF DIFFERENT IMPACT MOTIONS 
The motion with rigid impacts has very diverse response, depending on the system parameters, 

especially on dimensionless static clearance ρ=rk/F0 between mass m and the stop and on 
dimensionless excitation force frequency η=ω/Ω, where Ω=(k/m)1/2. Special structure of periodic and 
chaotic impact motion regions was found and four ways from periodic into chaotic impact motions 
were explained (Peterka and Vacík 1992), (Peterka 1999).  

Periodic motions are characterized by quantity z=p/n, where p is number of impacts and n is 
number of excitation periods T=2π/ω in one period of motion. This quantity characterizes also chaotic 
impact motions and corresponds to mean value of impacts in excitation period T.  

There exists fundamental series z=0,1,2,3,… . Motions repeat with period T (n=1) and differ by 
number p=0,1,2,.. of impacts. Impactless motion (z=0) belongs also into this series. Another series 
correspond to periodic subharmonic impact motions. Their period is integer multiple of T (n≥2). One 
of series is typical by p=1. These motions and fundamental impact motion z=1 (p=1, n=1) were 
analyzed analytically. There exist also other series of more complicated periodic impact motions, e.g. 
p=1,3,5,7,… impacts with period 2T (n=2) or p=2 impacts with period n=2,3,4,5,… . 

Every periodic impact motion has a region of existence and stability in space of system 
parameters. Regions of different motions are usually illustrated in plane (η×ρ), because they 
considerably influence the system response. Examples of regions are shown in Fig.3 for the Kelvin-
Voigt model and increasing relation k2/k1, which express the hardening of the stop elasticity. Similar 
regions are introduced in Fig.4 for piecewise linear model of soft impact and for viscous damping of 
impactless motion (constant b1/(2 km )=0.1). 

Results of the hardening of impacts can be expressed as it follows: 

1) Nonlinear phenomena birth on grazing boundary ρ where impacts appear in impactless motion. 
No hysteresis regions exist for small values of stiffness of spring k2. 

2) Regions of existence and stability of subharmonic and chaotic impact motions and their 
hysteresis regions into the region of impactless motion (z=0) become wider and develop from grazing 
boundary ρ. Similarly the hyseteresis region of the fundamental motion (z=1) increases, but its region 
under boundary ρ becomes narrower due to the expansion of regions of subharmonic impact motions. 

3) Transition cross grazing boundary ρ from impactless into one-impact motion is continuous for 
motion with soft impacts and very narrow region of one-impact motion with weak impacts exists 
along the boundary ρ. Nevertheless hysteresis regions of impact motions into impactless motion 
region exist. It is caused by the existence of saddle-node stability boundaries where regimes with weak 
impacts jumps into the same regime with strong impacts and not till these motions exhibit hysteresis 
phenomena. It will be explained in next chapter.  

4) Comparison of Figs.3(a),(b) and Fig.4 shows that the structure of fundamental and 
subharmonic impact motions does not depend considerably on the model of soft impact. 

5) Regions of existence and stability of periodic subharmonic impact motions, beginning from a 
certain order, lie only over the grazing bifurcation boundary ρ. Their appearance is conditioned by a 
special selection of initial conditions of the system motion and basins of attraction of all possible 
motions for certain combination of parameters should be ascertained. 
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Figure 5. Regions of impact motions for oscillator with soft impacts  

Figure 6. Enlarged regions of subharmonic impact motions 
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3. HYSTERESIS PHENOMENA OF IMPACT MOTION 
Typical feature of the impact motion with rigid impacts (k2/k1= ∞ ) is the non-continuous 

transition from the impactless motion into impact motion along grazing bifurcation boundary ρ (see 
boundary  ρ  in Fig. 3 (d)). The motion with repeated touch of moving body with the stop (grazing) is 
never stable and a jump into impact motion with strong impacts appears. z=1 impact motion with 
strong impacts stabilizes suddenly on segment ρ in frequency interval (1<η<2). This impact motion 
has hysteresis up to saddle-node stability boundary s+1, where it jumps back into impactless motion. 
Both neighboring z=0 and z=1 motions can exist in hysteresis region between boundaries ρ and s+1. 

 
Transition from impactless motion into one-impact motion cross grazing boundary ρ is 

continuous for motion with soft impacts. It will be explained using the system with the Kelvin-Voigt 
model of soft impact and k2/k1=7 (see Fig.5). z=1w impact motion with weak impacts arises on grazing 
boundary ρ and is stable (before-impact velocity on boundary ρ is zero). This motion losses stability 
on saddle-node bifurcation boundary (s+1)w between points B1 and B2 under boundary ρ (see Fig.5) and 
changes by jump into z=1s impact motion with stronger impacts. This motion exhibits hysteresis up to 
saddle-node stability boundary (s+1)s where it transfers again by jump either into motion z=1w (under 
boundary ρ on segments between points B1, X1 and B2, X2) or into impactles motion (over ρ on 
segment between points X1, X2). Stability boundary (s+1)w is near grazing boundary ρ and approaches it 
with increasing relation k2/k1 (hardening of the stop). This legality is schematically expressed in 
Fig.7(b). 

Similar but more complex structure exists for explanation of hysteresis phenomena of 
subharmonic impact motions, which appear under resonance of linear system in frequency interval 
2/3<η<1. Fundamental motion with rigid impacts losses its stability on period-doubling bifurcation 
boundary s-1 (see Fig.3(d)). Similar situation exists also for motion with soft impacts (see small 
regions of subharmonic motions z=2/2 and z=1/2, which are enlarged in Fig.6). Nevertheless, stability 
boundary s-1 is too nearby to grazing boundary ρ, especially near the incidence of hysteresis 
phenomena and it is impossible to express graphically the results of very accurate numerical 
simulations despite of considerable enlargement. Therefore the schematic Fig.7(a) will be used for the 
explanation of hysteresis phenomena. 

Impactless motion transits again into fundamental z=1 motion at grazing boundary ρ and later 
losses its stability at boundary s-1, where subharmonic motion z=2/2 continuously arises. Periodic 
impact splits on two very near impacts - weaker and stronger. Every impact repeats after two 
excitation periods and period of motion doubles. There exist again grazing bifurcation boundary g 
inside region of z=2/2 motion (similarly as boundary ρ between z=1 and impactless motion regions), 
where the splitting of motion is so large that weaker impact vanishes and subharmonic impact motion 
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                         (a)                                                                                 (b)
 Schematic explanation of hysteresis phenomena in motion with soft impactsFigure 7.



z=1/2 appears. This boundary is also reversible, so transition between motions z=2/2 and z=1/2 is 
continuous and without hysteresis. As lately as inside region of z=1/2 the saddle-node stability 
boundary (s+1)w exists (see dashed line between points B3 and B4 in Fig.7(a)), where regime z=(1/2)w 
with weak impact jumps into the same regime with stronger impact (z=(1/2)s). Not until this motion 
exhibits hysteresis up to its saddle-node stability boundary (s+1)s (see full line between points B3 and 
B4 in Fig.7(a)). As this boundary crosses different regions of periodic motions (Fig.7(a)), periodic 
z=(1/2)s motion jumps into z=(1/2)w or z=2/2 or impactles (z=0) motion.  

It is necessary to specify next three features of explained scheme: 
1) hysteresis regions of impact motions express many of possible subharmonic and ultra-

subharmonic resonances of the system motion (Peterka 1981), where considerable part of 
natural vibration exists in the motion besides a part of excited vibration, 

2) region of z=2/2 motion exhibits also the hysteresis into regions of z=(1/2)w, z=2/2 and (z=0) 
motions, but it does not transit into these motions, because it continuously changes into 
z=(1/2)s motion. It follows from described situation that z=2/2 motion should be 
distinguished on two regimes z=(2/2)w and z=(2/2)s too, 

3) z=(1/2)w impact motion transits into z=(1/2)s motion only along short segments of saddle-
node stability boundary (s+1)w near points B3 and B4 (in region of z=1/2 motion in Fig.7(a)). 
The transition of system motion along remaining part of stability boundary (s+1)w (in region of 
z=2/2 motion) is characterized by the tendency of stabilization of z=(1/2)s motion too, but 
during the transition the second impact in motion period appears due to a larger intensity of 
motion and z=(2/2)s stabilizes. 

4. CONSLUSION 
New phenomena of motion of impact oscillator with soft impacts were obtained. The 

development of nonlinear characteristics of system motion when the hardening of the stop changes 
from zero to infinity was explained. It corresponds to the transition from the linear oscillator motion 
into the motion of oscillator with rigid impacts. 
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