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MACROSCOPIC APPROACH TO STRESS

ANALYSIS OF AORTIC ANEURYSM

Eduard Rohan∗, Robert Cimrman†

Summary: In this paper we try to analyze numerically mechanical behaviour of the abdom-
inal aneurysmatic aorta (AAA). For this we apply the composite model of smooth muscle
which has been developed by authors and described in [1, 2]. Several geometrical parameters
are considered to define various shapes of AAA. For these the tensions in collagen and
elastin fibres are evaluated.
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1 Introduction

The abdominal aortic aneurysm AAA, cf. [3], is a result of chronic degenerative conditions
associated with aging, atherosclerosis, male gender, hypertension and other phenomena. From
normal aorta the AAA differs in the shape and the material properties. The wall of normal
aorta consists of three distinguishable layers — intima, media and adventitia. The two “bound-
ary” layers, i.e. intima and adventitia, are less important in the context of strength and stress
transmission. Intima is formed mainly by endothelial and fibroblast cells. Adventitia contains
collagen connective tissues which are very compliant, connecting aorta with surrounding organs.
The pulsatile arterial blood pressure is balanced mainly by the media layer with the largest
thickness of the three ones (approx. 1 mm), consisting of about 60 elastic perforated membranes
separated by smooth muscle cells (SMC) and collagen fibres. The membranes are formed by
elastin fibres abundant in spiral grids

The AAA is a product of pathological processes which may have different origins and causes
in particular occurrences. In contrast with normal aorta the tissue of AAA seems to be orga-
nized chaotically. Media of normal aorta contains approximately 40–60 % of elastin, 12–20 % of
collagen, the rest constituted by SMC (about 40 %). In media of AAA elastin is low distributed
(0–30 %) being replaced by collagen (45–55 %), the volume fraction of SMC is decreased. These
figures, however, are only tentative and may depend on the stage of AAA, cf. [3]. Aneurysms
evolve through three clinical stages. Stage I (early aneurysm) is characterized by elastin degrada-
tion and by increased production of collagen; the maximum diameter of AAA is 2–3 cm. In stage
II collagen degradation (the change of the collagen type, or annihilation) is balanced by collagen
production; the maximum diameter of AAA is up to 5 cm. Stage III is “unstable”, characterized
by accelerated collagen degradation exceeding its production. If AAA expands over 5 cm, the
risk of rupture is quite serious and generally the surgical repair is required in this stage.

The obvious reason for a surgical operation of AAA is to prevent its rupture. The simple
5 cm diameter based criterion has proved to be insufficient in practice. Also other geometrical
characteristics determining the shape of AAA should be considered to justify operation in some
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particular instances. The critical state of AAA should be correlated with values of mechanical
wall stress. In [4] the stress analysis of AAA was based on linear elastic isotropic material
assuming small deformation. The bulge shape of the vessel was parametrized by a maximum
diameter and an excentricity of the aneurysm. It was shown that both these parameters influence
peak stresses, however, because of the rough simplifications of the biological material (the linear
analysis) a stronger conclusions could not be made.

The purpose of the present paper is to carry out a similar analysis of the stress response of
AAA. For this we apply the composite model of smooth muscle which has been developed by
the authors and described in [1, 5]. A brief summary of the model is presented in the following
section.

2 Composite model of arterial wall

The model is based on the mixture theory approach. The microstructure of the smooth mus-
cle tissue is characterized by volume fractions of the three basic components involved: the active
fibres representing bundles of muscle cells, the passive fibres corresponding to collagen, elastin
fibres and the matrix. In aneurysmatic aortic wall the mechanical importance of SMCs is sup-
pressed, as they are minor in comparison with other components (collagen, elastin). Nevertheless,
activation of SMC is constant, persisting in the “pseudo-passive” (“latch”) regime. Due to this
fact in our computational model we omit the presence of the muscle fibres substituting bundles
of SMCs and use a simplified model comprising only passive fibres (elastin and collagen) and
the hyperelastic matrix.

We consider three constituents of the reduced model: elastin, collagen and matrix. Their
respective volume fractions are denoted by φe, φc and φm, where φe +φc +φm = 1. They remain
constant during deformation. At any point of the continuum the model enables both the elastin
and collagen fibres to be distributed in several preferential directions in which the tension can
be transmitted — the kth one is denoted by νk

i in the undeformed configuration, k ∈ Ie for the
elastin fibres, k ∈ Ic for the collagen ones; Ie, Ic are index sets. A quantity of fibres in the kth

direction is proportional to the volume fraction φk
n,

∑
k∈In φk

n = 1 for n = e, f . Introducing the
directional tensor (in the reference configuration)

ωk
ij = νk

i νk
j , (1)

we can express the fibre stresses as follows:
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the fibre tensions τk
e , τk

c are defined using elastic and viscoelastic models, respectively. The matrix
is defined using the neo-Hookean hyperelastic model. By Cij we denote the right Cauchy-Green
deformation tensor, J = (det(Cij))1/2, Eij = 1

2(Cij −δij). Using the above notation we can write
the total 2nd Piola-Kirchhoff stress:

Sij = −JC−1
ij p + φm

∂Wm

∂Eij
+ φeτ

e
ij + φcτ

c
ij . (3)

The first term involving the thermodynamic pressure p results from the assumed genuine in-
compressibility of the bulk composite material, the second one is the stress in the hyperelastic
matrix (the gradient of the strain energy w.r.t. Green-Lagrange strain Eij). Projecting Eij in
the direction of a fibre we obtain strain in the fibre, i.e. εk = Eijω

k
ij , see (1). Based on this we

define the tensions of (2)

elastin: τk
e = Ee(εk − ε̄k

e), k ∈ Ie , (4)

collagen: σk
c = Ec[exp{κ(εk − ε̄k

c )} − 1], k ∈ Ic , (5)



where σc is the elastic response stress of the viscoelastic model of collagen fibres, see [2, 1], so
that for the relaxed state one has τk

c = (1−γ)σk
c . By ε̄k

e < 0 for k ∈ Ie we account for prestraining
of elastin fibres, whereas for collagen fibres we usually take ε̄k

c > 0, k ∈ Ic to account for collagen
waviness in unloaded state.

3 Geometry of AAA

For our numerical simulations we take a model of AAA with length L = 11 cm and the
nominal diameter d = 2 cm, see Fig. 1. The bulge shape is described by the following parameters:
maximal diameter of the midsection Dmax (the distance between anterior and posterior walls),
the width of the midsection Dmin, excentricity parameter e, oblateness o. The transverse sections
of the vessel are described by ellipses derived by a nonlinear interpolation between end-circles
and the midsection ellipse with the axes Dmax, Dmin; if o = 1, then Dmin = Dmax, if o = omin,
then Dmin < Dmax such that the circle with diameter d = 2 cm osculates the ellipse at its
“anterior” and “posterior” points. Concerning the wall thickening of the mid part the three cases
are considered: case 0 — constant thickness 0.26 cm for the whole vessel, case A — uniform
thickening at the mid part, case B — thickening along the anterior part of the surface, normal
thickness at the posterior past. The maximum thickness in cases A, B is tmax = 0.26 · (1 + tr),
for tr see Tab. 1.

Fig. 1: Scheme of AAA geometry: c1–c4 are curves of stress evaluation, by A, B are
labeled the two cases of thickening.

4 Material parameters

We assumed that both collagen and elastin fibres are distributed in preferential directions;
at any point of the mid-surface of the arterial shell in the tangent plane we define two spiral
fibres, ν1, ν2, declined 10◦ off the circumferential direction and one longitudinal direction ν3, so
that Ie = Ic = {1, 2, 3}. In the normal part of the vessel (the ends) we take φ1

e = φ2
e = 0.15,

φ3
e = 0.20, φ1

c = φ2
c = 0.1, φ3

c = 0.05, whereas in the midsection we take φ1
e = φ2

e = φ3
e = 0.05,

φ1
c = φ2

c = 0.25, φ3
c = 0.2, see (2). Further we define ε̄k

e = −0.14 and ε̄k
c = 0.1, k = 1, 2, 3

at the ends, whereas ε̄k
e = −0.14, k = 1, 2, 3 and ε̄k

c = −0.06 is used in the midsection. The
parameters ε̄k

e , ε̄k
c vary linearly with the “radial” coordinate; the above values are defined on



the outer surface of the vessel, whereas we have ε̄k
e , ε̄

k
c = 0 on the inner surface. This variation

should account for the well-known prestraining of arterial walls, see e.g. [6].
The constitutive laws for elastin and collagen in (4), (5) are defined with Ee = 2 · 103 kPa,

Ec = 50 kPa, κ = 13, the viscoelasticity of collagen is given by the relaxation parameter γ = 0.75,
and Trelax = 1 s.

type: 01 02 03 04 05 06 07 08 09 10 11 12 13 14
Dmax 4.5 4.5 4.5 4.5 4.5 4.5 3.5 3.5 3.5 3.5 3.5 3.5 5.5 5.5

e 1.25 1.25 1.25 1.25 0.75 0.75 0.75 0.75 0.75 0.75 0.35 0.35 1.25 1.75
o 1 omin 1 omin 1 omin 1 omin 1 omin 1 omin 1 omin

T 0 0 A B A B 0 0 A B A B A B
tr 0 0 1.3 1.3 1.3 1.3 0 0 1.0 1.0 0.9 0.9 1.3 1.3

Tab. 1: Geometrical parameters of the AAA types 01 – 14.

5 Results

The numerical simulations were performed for fourteen types of the AAA geometry, see
Tab. 1, labeled as 01 – 14. Each model of the vessel was fixed in axial the direction on the
“left” end, the mesh points of the “right” one were restricted to have a same axial displacement.
The results are introduced for maximal arterial pressure load 25 kPa applied gradually in 1 s,
starting at unloaded relaxed state.

In order to assess the strength of the particular AAA cases we evaluated tensions in both
elastin and collagen fibres along material curves c1–c4, see Fig. 1, defined on the mid-surface of
the shell. Curve c1 is on the anterior side, c2 is on the posterior one, while c3 is on the lateral
side; c4 is the transversal section of the mid-shell. Figs. 4–9 present the Cauchy (true) tension
in collagen fibres in the spiral (fibres 1) and longitudinal (fibres 2) directions for types 01–06,
i.e. Dmax = 4.5 and 13, 14, i.e. Dmax = 5.5. Similar results for elastin are in Figs. 10–13. For
Dmax = 3.5 a selection of results is in Figs. 15–20. In Figs. 2, 3 we present comparison of the
unloaded and loaded vessel for Dmax = 5.5. Figs. 21–34 show tension in collagen spiral fibres in
the inflated geometry.

Fig. 2: Original mesh, case 13. Fig. 3: Deformed mesh, case 13.

6 Conclusion

In the numerical tests we observed that, in general, the behaviour of the vessel depends
strongly on the material data, namely on the choice of the fibre directions and the prestraining.
Of particular interest are the boundary conditions prescribed at the ends of the vessel. In [4]
the clamped ends were used, thus causing an axial stress. In contrast with it we assumed that
no axial force is transmitted by the vessel and, simultaneously, the vessel does not elongate
significantly when inflated. For this, however, we had to tune the material topology data.



Fig. 4: Collagen fibres 1, curve 1. Fig. 5: Collagen fibres 1, curve 2.

Fig. 6: Collagen fibres 1, curve 3. Fig. 7: Collagen fibres 1, curve 4.

Fig. 8: Collagen fibres 3, curve 3. Fig. 9: Collagen fibres 3, curve 4.



Fig. 10: Elastin fibres 1, curve 1. Fig. 11: Elastin fibres 1, curve 2.

Fig. 12: Elastin fibres 1, curve 3. Fig. 13: Elastin fibres 1, curve 4.

Fig. 14: Collagen fibres 1 (left), 3 (right) — all tests. Points 1–3 are intersections of the midsection
with the curves c1–c3, respectively.



Fig. 15: Elastin fibres 1, curve 1. Fig. 16: Elastin fibres 1, curve 2.

Fig. 17: Elastin fibres 1, curve 4. Fig. 18: Collagen fibres 1, curve 4.

Fig. 19: Elastin fibres 3, curve 4. Fig. 20: Collagen fibres 3, curve 4.



Fig. 21: Case 01. Fig. 22: Case 02. Fig. 23: Case 03. Fig. 24: Case 04.

Fig. 25: Case 05. Fig. 26: Case 06. Fig. 27: Case 07. Fig. 28: Case 08.

Fig. 29: Case 09. Fig. 30: Case 10. Fig. 31: Case 11. Fig. 32: Case 12.

Fig. 33: Case 13. Fig. 34: Case 14.

The interpretation of the given figures is not easy. On the other hand we may conclude,
that the thickness of the posterior wall is important parameter as well as the oblateness of the
midsection. These parameters were not considered in [4]. In some cases the worst tensile loading
is not in the mid-section. Therefore, we suggest to evaluate stresses along the four curves c1–c4,
see Fig. 1. Some objective comparison of all the analyzed types of AAA can be found in Fig. 14.
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