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EVALUATION OF EFFECTIVE PROPERTIES OF

WOVEN COMPOSITE TUBES
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Summary:
The stepping stone in evaluating effective elastic properties of woven composite tubes

is an accurate geometrical description of the composite tube on meso-scale taking the real
geometry of the fiber-tow into account. The relevant geometrical parameters gained from
images of real microstructure are provided by a powerful image analyzer Lucie. Further-
more, the periodic character of a fiber-tows arrangement, typical for woven composites,
reduces the basic geometrical model to a certain periodic unit cell. Two specific unit cells
linked to two different homogenization approaches are introduced. When subjected to suit-
able periodic boundary conditions, the homogenized unit cells can be periodically extended
to map the effective elastic properties over the macroscopic domain under consideration.
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Introduction

At present, composite materials are still more often used in civil engineering mainly in
rehabilitation and repair of concrete and masonry structures. Undoubtable benefits offered
by composite materials such as non corrosive properties, light weight, high strength and, of
course, design possibilities in shape, structures and colors are the main reason for this boom.
Increasing desire for reliable and low cost material systems results in new inexpensive fabrication
methods for even larger parts, which can be used in many other applications such as bridge
structures, facades and structural parts of commercial and industrial buildings, etc. A polymer
matrix system reinforced by glass or graphite fibers appears to be one of the most popular
composite material systems. It has been recognized for several years that overall response of
such a composite is highly influenced by micromechanical behavior of composite systems.

As suggested in [7, 8], multi-scale modeling is a very useful tool to determine the over-
all material properties of composite materials and structures. The procedure usually starts
by determining the effective elastic properties of a medium on a micro-scale level, Fig. 1(c).
To that end, probabilistic methods for homogenization [3, 7] are usually applied. Numerical
simulations on the micro-scale level combined with carefully selected laboratory measurements
should offer homogenized properties for fiber tow-epoxy matrix mixture displayed in Fig. 1(c).
Typically, standard homogenization process based on either periodic unit cell models or the
Hashin-Shtrikman variational principles is performed at this level [9].

The next step requires homogenization on a meso-scale level using the geometry of bundles
embedded in a matrix, Fig. 1(b). A periodic character of woven composites suggests to formu-
late a representative volume element in terms of a certain periodic unit cell. Two geometric
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Figure 1: Graphite fiber fabric–polymer matrix composite

variants of the periodic unit cell to model interactions between individual phases are presented
in Section 1. Each model is linked with a specific homogenization technique. The first approach
assumes the original geometric model to be discretized into N1xN2xN3 pixels. Each pixel rep-
resents a center of a cubic element with certain homogenized properties. An iterative numerical
method based on Fast Fourier Transforms [5] is then used to evaluate the effective properties of
the periodic unit cell. This approach is outlined in Section 3. The second approach, discussed in
Section 2, employs the finite element method to solve the relevant boundary value problem. The
computational model relies on interconnecting bundles by the polymer matrix contact elements.

Having the effective properties on the meso-scale the procedure concludes with the macro-
scopic analysis of a large composite structural part, Fig. 1(a).

Figure 2: Weave lay–up

1 Geometrical model on meso-scale

For modeling purposes we limit our attention to a two-ply composite tube. Depending on
winding speed and orientation the number of bundles within periodically repeating regions may



Figure 3: Crossing of bundles

vary. In our particular case, the meso-scale unit cell consists of two plies where each ply contains
six bundles. The bundle is formed by unidirectional graphite fibers (approximately 12000 fibers
within a bundle) bonded to the polymer matrix. Overall properties of this mixture are found
from homogenization procedure carried out on the micro-scale [9]. All six bundles are aligned
along the same direction, but they run through individual plies thus creating a typical woven
structure of the composite. This is shown schematically in Fig. 2. Fig. 3 depicts an intersection
exchange of two bundles, which propagate from one ply into the other.

The shape of the bundle cross-section is derived from images of real composite structure.
One typical section is displayed in Fig. 4(a) showing a portion of the bundle cross-section and
together with longitudinal variation of the bundle middle curve. With the help of the image
analyzer LUCIE such a micrograph can be transformed into a binary image and further analyze
to provide all geometrical parameters to build an idealized geometrical model such as the one
shown in Fig. 4(b).

(a) (b)

Figure 4: Geometry of fiber bundle

The microscopic images of a real tube suggest that every bundle is impregnated by the
polymer matrix, the thickness of which is about 0,03 mm. The interface layer between the two
bundles is approximately 0,02 mm thick. The same thickness is considered between the two
bundles, which are parallel to each other and lay in the same ply. To simplify the geometrical
model it is contemplated that the shape of the bundle cross-section is kept constant along the
whole bundle. The bundle itself is created by translating the bundle cross-section along the
middle-curve, recall Fig. 4(a). A section of the resulting unit cell generated using the above
assumptions appears in Fig. 5(a).

Such a geometrical model, however, is not very suitable for computational modeling using
the finite element method. The main drawback is a very thin interface layer. Its discretization
results in very small elements spread over large region of the unit cell thus leading to enormous
computational effort, while not substantially increasing the accuracy of the numerical model.
Therefore, in order to arrive at a feasible numerical model, some action must be taken. A suitable
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Figure 5: Geometrical model of the unit cell – idealization

method of attack appears in replacing the interface layer by contact elements with zero thickness
and appropriate interfacial properties. A section of such a model is depicted in Fig. 5(b). This
particular model is used in conjunction with standard homogenization procedure discussed in
Section 2. An example of a bundle mesh is shown in Fig. 6 obtained using the automatic mesh
generator [6]. On the other hand, a literature offers a powerful homogenization method based on
Hashin and Shtrikman [3] idea combined with the Fast Fourier Transform to solve the resulting
equations [5], which can be exploited in conjunction with the original unit cell model, Fig. 5(a).

Figure 6: Bundle meshing

2 Homogenization based on Finite Element Method

Here we limit our attention to pure mechanical loading and define the following mechanical
loading problems

u0(x) = E · x x ∈ S, (1)

p0(x) = Σ · n(x) x ∈ S, (2)

where u0 and p0 are the displacement and traction vectors on the external boundary S of a
representative volume element Ω of the composite; n is the outer unit normal to S; E and
Σ are the applied macroscopic uniform strain and stress fields, respectively. The macroscopic
constitutive relations are then provided by

〈σ(x)〉 = 〈L(x)ε(x)〉 =
2∑
r=1

crLr 〈εr(x)〉 = LE (3)

〈ε(x)〉 = 〈M(x)σ(x)〉 =
2∑
r=1

crMr 〈σr(x)〉 = M Σ, (4)



where 〈·〉 stands for the spatial average of a given field, cr is the volume fraction of the rth

phase, and L and M are the effective stiffness and compliance matrices of the heterogenous
material, respectively. Eqs. (3) and (4) follow directly from Hill’s lemma [4]. He proved that for
compatible strain and equilibrated stress fields the following relation holds〈

ε(x)Tσ(x)
〉

= 〈ε(x)〉T 〈σ(x)〉 , (5)

and consequently

ET LE = 〈ε(x)TL(x)ε(x)〉, (6)

ΣT M Σ = 〈σ(x)TM(x)σ(x)〉. (7)

Eq. (5) states in fact that the average of “microscopic” internal work is equal to the macroscopic
work done by internal forces. The above relations provide the stepping stone for the derivation
of effective properties of composite materials.

The following paragraphs outline evaluation of effective properties of a composite aggregate
represented here by the periodic material models of Fig. 2. Two specific approaches correspond-
ing to loading conditions (1) and (2) are discussed in the sequel.

Formulation based on strain approach
Consider a material representative volume defined in terms of a periodic unit cell (PUC).

Suppose that the PUC is subjected to boundary displacements u0 resulting in a uniform strain
E throughout the body, Eq. (1). In view of boundary conditions imposed on the unit cell the
strain and displacement fields in the PUC admit the following decomposition

u(x) = E · x + u∗(x), ∀x ∈ Ω, u = u0 ∀x ∈ S (8)

ε(x) = E + ε∗(x), ∀x ∈ Ω. (9)

The first term in Eq. (8) corresponds to a displacement field in an effective homogeneous medium
which has the same overall properties as the composite aggregate. The fluctuation part u∗ enters
Eq. (8) as a consequence of the presence of heterogeneities and has to disappear upon volume
averaging, see [1] for further discussion. This condition is met for any periodic displacement
field with the period equal to the size of the unit cell under consideration, [5, and references
therein]. The periodicity of u∗ further implies that the average of ε∗ in the unit cell vanishes as
well. Hence

〈ε(x)〉 = E + 〈ε∗(x)〉 , 〈ε∗(x)〉 =
1
Ω

∫
Ω
ε∗(x)dx = 0. (10)

Next, assume a virtual displacement δu(x) = δE ·x+δu∗(x), with δu∗(x) being periodic. Then
the principle of virtual work reads〈

δε(x)Tσ(x)
〉

= 〈δε(x)〉T 〈σ(x)〉 = 0, (11)

since 〈σ〉 = 0. Eq. (11) is essentially the Hill lemma introduced by Eq. (5).
Solving the above relation calls for a suitable numerical technique such as the Finite Element

Method (FEM), [2]. In this framework the displacement field in Eq. (8) assumes the form

u(x) = E · x + N(x)r, (12)

where N(x) represent shape functions of a given element and r is the vector of unknown degrees
of freedom. The corresponding strain field is then provided by

ε(x) = E + B(x)r. (13)



Introducing Eq. (13) into Eq. (11) gives for any kinematically admissible strains δε∗ = Bδu∗

the associated system of linear equations in the form

Kr = f , (14)

where

K =
∑
e

Ke where Ke =
1
Ω

∫
Ae

BTLeB dAe

f =
∑
e

f e where f e = − 1
Ω

∫
Ae

BTLeE dAe, (15)

where K is the stiffness matrix of the system and f is the vector of global nodal forces resulting
from the loading by E; e stands for the number of elements, Ae is the area of element e, and Ω
is the area of the PUC.

System (14) can be used to provide the coefficients of the effective stiffness matrix L as volume
averages of the local fields derived from the solution of four successive elasticity problems. To
that end, the periodic unit cell is loaded, in turn, by each of the four components of E, while
the other three components vanish. The volume stress averages normalized with respect to E
then furnish individual columns of L. The required periodicity conditions (same displacements
u∗ on opposite sides of the unit cell) is accounted for through multi-point constraints.

Formulation based on stress approach
Sometimes it is desirable to apply the overall stress Σ, Eq. (2), instead of the overall strain

E. Eq. (11) then modifies to〈
δε(x)Tσ(x)

〉
= δETΣ, Σ = 〈σ(x)〉 . (16)

Clearly, such a loading condition leaves us with unknown overall strain E and periodic displace-
ment field u∗ to be determined. Substituting Eq. (9) into Eq. (16) yields

δET 〈L(x) (E + ε∗(x))〉+
〈
δε∗(x)TL(x)E

〉
+
〈
δε∗(x)TL(x)ε∗(x)

〉
= δETΣ. (17)

Since δE and δε∗(x) are independent, the preceding equation can be split into two equalities

δETΣ = δET [〈L(x)〉E + 〈L(x)ε∗(x)〉] (18)

0 =
〈
δε∗(x)TL(x)

〉
E +

〈
δε∗(x)TL(x)ε∗(x)

〉
Finally, following the same lines as in the previous paragraph the FE discretization, Eqs. (12)
and (13), provides the linear coupled system in the form, [5],

1
Ω

∫
Ω

L dΩ
1
Ω

∫
Ω

LB dΩ
1
Ω

∫
Ω

BTL dΩ
1
Ω

∫
Ω

BTLB dΩ


{
E
r

}
=

{
Σ
0

}
. (19)

The above system of equations serves to derive the coefficients of the effective compliance
matrix M. In analogy with the strain approach, the periodic unit cell is loaded, in turn, by
each of the four components of Σ, while the other three components vanish. The volume strain
averages normalized with respect to Σ then supply individual entries of M. Applications to
micro-scale unit cell can be found in [9]. Results derived for the meso-scale unit cell will be
presented elsewhere.



3 Homogenization based on Fast Fourier Transforms

The formulation starts with the definition of a reference medium L0. Then, constitutive
equations can be written in the form

σ(x) = L(x)ε(x) = L0ε(x) + τ (x), (20)

where τ is the stress polarization tensor given by

τ (x) = (L(x)− L0)ε(x). (21)

Once the polarization stress is known, the strain field ε(x) can be obtained via Green’s function
Γ, corresponding to a given reference medium

ε(x) = E −
∫

Ω
Γ(x− x′)τ (x′)dx′. (22)

After inserting relation (21) into (22), we obtain the so called periodic Lippmann-Schwinger
integral equation for a given medium

ε(x) +
∫

Ω
Γ(x− x′)(L(x′)− L0)ε(x′)dx′ = E. (23)

This equation can be solved by the following iterative procedure:

εk+1(x) = E−
∫

Ω
Γ(x− x′)(L(x′)− L0)εk(x′)dx′. (24)

Using the relation

ε(x) = E +
∫

Ω
Γ(x− x′)L0ε(x′)dx′ (25)

we finally arrive at

εk+1(x) = εk(x)−
∫

Ω
Γ(x− x′)L(x′)εk(x′)dx′ (26)

= εk(x)−
∫

Ω
Γ(x− x′)σ(x′)dx′. (27)

The numerical procedure for solving this equation is based on the fact that the term
∫

Ω Γ(x−
x′)σ(x′)dx′ can be efficiently evaluated using Fourier transform techniques. To that end, the
material is divided into the lattice of N1 × N2 × N3 points and appropriate stiffness tensors
are assigned to each point. The corresponding stress and strain fields are then obtained by the
following process:

0. Initialize: k = 0, ε0 = E,σ0 = L(x)E.

1. Compute σ̂k by FFT

2. Convergence test: ‖ξ · σ̂k(ξ)‖ ≤ tol

3. Set

ε̂k+1(ξ) = ε̂k − Γ̂(ξ)σ̂k(ξ) for ξ 6= 0

ε̂k+1(ξ) = E for ξ = 0

4. Compute εk+1 by inverse FFT

5. Set σk+1(x) = L(x)εk+1(x)

6. k = k + 1, go to 1.

Details regarding this method together with suggestions for the choice of reference material
can be found in [5] and references therein.



4 Conclusion

The paper outlines modeling tools applicable to formulation of meso-scale periodic unit cells.
Such unit cells are intended for evaluation of effective elastic properties of woven composite tubes
made from graphite fibers bonded to polymer matrix. Standard FEM based homogenization
procedure and the method based on Fast Fourier Transforms can be implemented to derive the
desired results.
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