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Abstract: Dynamic properties of the mechanical system with one degree of freedom containing soft 

stop are investigated. Dynamical impact model respects the non-linearity of the restoring contact force 
between solid bodies as function of deformation according to the Hertz theory. The explanation of the 
system motion behaviour, when static clearance decreases up to negative values, which express the static 
prestress, is the main aim of this paper. This process is explained in more detai  using phase trajectories, 
time series and Poincarè maps. 
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1. Introduction 
Dynamic properties of the mechanical system with one degree of freedom 

containing soft stop (Fig.1) are investigated. Oscillator is excited by harmonic force 
F0cosητ and its mass m can impact against a soft stop situated in certain distance ρ from 
the mass equilibrium position. The proposed general dynamical impact model (Fig.2) 
respects the non-linearity of the restoring contact force between solid bodies as function 
of deformation (according to the Hertz theory) and velocity in the form 
F(X,X’)=f(X)(1+g(X’)). It describes the real behaviour of impacting system more exact 
than the Kelvin-Voigt model or model based on application of constant coefficient of 
restitution (according to the Newton impact theory).  

Various types of impact motion exist in the dependence on dimensionless 
parameters ρ and η (Fig.3). Main effort was concentrated on the study of transitions 
between individual regions corresponding to periodic and chaotic impact motions. 
Significant differences were ascertained in comparison with those obtained for 
oscillator with rigid impacts. Forced vibrations with impacts were shown [1], [2] also 
using phase trajectories, time histories, bifurcation diagrams, basins of attraction and 
Poincarè maps.  
The explanation of the system motion behaviour, when clearance � decreases up to 
negative values, is the main aim of this paper. It is known in this case, that system 
motion with rigid impacts ( )∞→ρ )',( XF  is characterized by the increase of the impact 
number z and the motion transits into the regime with sliding impacts (Fig.4). The 
impacting mass m is connected with the rigid stop for a certain part or all excitation 
period (dead zone). Similar behaviour appears firstly also for the motion with soft 
impacts (e.g. z=5/1, Fig.5(a)), but when negative clearance (the static prestress of mass 
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m to the stop) increases, then impact number z decreases (e.g. z=4/1, Fig.5(b)). The 
system motion transits finally into the impactless motion (z=0), when mass m vibrates 
all the time in the connection with the soft stop. This process is explained in more detail 
along vertical line a (η=0.6) in Fig.3 using phase trajectories, time series and Poincarè 
maps. 

2. Transition into impactless motion with decreasing clearance 
Region labelled by 1/3=z  in Fig.3 contains all periodic and chaotic impact 

motions beginning 1/3=z . Their subregions are very narrow and therefore the 
behaviour of the system will be explained by the decrease of clearance ρ along line a. 
There exists series of fundamental motions 1/pz =  (p = 0, 1, 2, 3, 4; see Figs.6(a),(b), 
(c),(d),10(g),5(a)). Transition hysteresis and beat-motion regions exist between 
neighbour regions of fundamental impacts motion [3]. Motions which exist in beat-
motion region between regions of 1/3=z  and 1/4=z  motions are shown in Figs. 6-
10, where are also phase trajectories ),( XX ′ , e.g. Fig.7(a) and Poincarè maps ( −′ϕ X, ), 
e.g. Fig.7(c). Poincarè maps indicate the state system motion at instant just before 
impact −′ρ= XX ,(  - before impact velocity, ϕ -phase of excitation force by green 
circles. For example, the state of system at instant just after impact is indicated by red 
circles in Fig.7(d). 

Figures are labelled by impact number z, value of which lies in interval 3<z<4 and 
it increases with decreasing ρ. Fractional values correspond to periodic subharmonic 
impact motion and decimal values are mean values of chaotic impact motion. Many 
periodic motions were ascertained by the change of ρ with gradual steps of order 
0.0001. 

 Main series of different subharmonic motions is: 
2/6=z  (Fig.7(b)), 2/7=z  (Fig.7(d)), 6/20=z  (Figs.8(a),(c)), 12/40=z  

(Figs.8(e),(g)) as an example of period doubling of 6/20=z  motion, 10/33=z  
(Fig.9(a)), 4/13=z  (Fig.9(c)), 7/22=z  (Fig.9(d)), 5/17=z  (Fig.9(e)), 5/16=z  
(Fig.9(f)) as an example of the loss of impact from 5/17=z  impact motion on grazing 
boundary, 3/10=z  (Fig.9(g)), 3/11=z  (Fig.9(h)) as an example of additional impact 
in 3/10=z  motion appearing on grazing boundary, 5/18=z  (Fig.10(a)), 4/15=z  
(Fig.10(b)), 4/16=z  (Fig.10(d)) and 2/8=z  (Fig.10(e)) as examples of period 
doublings of 1/4=z  motion (Figs.10(f),(g),(h)). 

There exist also many other periodic subharmonic motions developed from 
mentioned above motions by periodic doublings. Periodic motions are immersed into 
chaotic motion (periodic windows in the chaos) shown for example in Figs.8(d),(f),(h), 
9(b), 10(c). All four ways from periodic into chaotic impact motion, explained for 
motion with rigid impacts [4], [5] were ascertained also for this system with soft 
impacts. For example, the intermittency chaos (Figs.8(b),(d)) arises with increasing ρ 
from 6/20=z  (Fig.8(a)) on its saddle-node stability boundary ρ = - 0.272092). This 
chaotic motion jumps then into periodic motion 2/6=z  (Fig.7(d)), when ρ = - 02699. 
It means, that hysteresis of chaotic motion into 6/2=z  motion exists, which is 
characteristic feature of this way into chaos connected with the jump from chaotic into 
periodic impact motion. 

This wide variety of periodic subharmonic and chaotic motions is caused by the 
exclusion of viscous damping b of spring k (Fig.1) during the contact of mass m with 
the stop, while out of contact acts the damping b=0.1 km . 



 

 

Similar complex system behaviour was ascertained also in subregion of 
subharmonic periodic and chaotic motions between 4=z  (Fig.10(g)) and 5=z  
(Fig.5(a)) motions. Periodic motions z = 21/5, 9/2, 23/5, 14/3, 28/6, 42/9, 34/7 and their 
period doubling derivatives are again immersed into the region of chaotic motion. Such 
motions are not shown here. 

It is apparent from mentioned two series of z, that subharmonic motions of order n 
= 2, 3, 4, 5, 7, 9, 10 exist in transition beat motion regions between regions of 
fundamental motions z=3, z=4, z=5.  

The increase of quantity z does not continue with next increase of negative 
clearance ρ . The physical explanation of this phenomenon consists in increasing static 
prestress of the body m to the soft stop and some oscillation of higher frequency, caused 
by the stop stiffness, does not lose the contact with the stop. The number of such 
oscillation increases (Fig.5(b)) and therefore number z decreases. Next fundamental 
motion 1/3=z  is shown in Fig.11(a). Between motions 5=z , 4=z  and 4=z , 3=z  
exist again subharmonic and chaotic motions, but motion 3=z  transits by jump into 

1/1=z  (Fig.11(b)) on the saddle-node stability boundary. Finally, the last impact 
gradually disappears and system moves without impacts in the steady connection of 
mass m with the stop. As the system motion turns to impactless motion, the intensity of 
impacts weakens and natural oscillations with high frequency die (Fig.11) and excited 
vibrations remain. 

3. Conclusion 
The main result of this paper is the explanation of the behaviour of the oscillator 

with soft impacts, when impacts disappear owing to the increase of static prestress, i.e. 
large negative clearance. Quantity z, which characterizes the impact motion, firstly 
increases and later decreases to 0=z  corresponding to impactless motion. During this 
process were ascertained all characteristic features of impact oscillator dynamics as 
different bifurcations, instabilities, ways into chaos etc. 
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