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Abstract: The paper deals with the homogenization method in the context
of modelling biological tissues which undergo large deformation. The updated
Lagrangian scheme is applied to obtain linear subproblems which can be ho-
mogenized using the two scale convergence, cf. [6, 7]. It is suggested how an
incremental “macroscopic” constitutive law can be obtained in terms of the
homogenized coefficients for contracting smooth muscle cells. A simple (hyper-
elastic) model of the microstructure with contractile filaments is presented.
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1. Introduction

In biological tissues the material is characterized very often as a mixture of solid
and fluid (liquid) objects, which form the microstructure. If we look at the smooth
muscle tissue at the microscopic scale, we recognize individual muscle cells embedded
in the tissue matrix. This is a substance constituted by collagen fibrous components,
very viscous fluid (amorphous substance) and some other components. The matrix
itself presents a very complicated system with inter-penetration, swelling and elec-
trochemical interactions at the sub-microscopic scale; the models which describe its
behaviour are based on the mixture theory and theory of porous materials.

When the muscle cells are activated, they change the shape due to the forces
produced by the actin–myosin couples in the cytoskeleton, cf. [3]. This change
induces stresses in the surrounding matrix and results also in the mass redistribution
in the vicinity of each cell. Besides the complexity of the constitutive laws of all
members involved in the force–generating chain, we should notice also the geometrical
non-linearity which is caused by large deformations of the microstructure.

The up-to-date constitutive models in biomechanics of soft tissues are based in
general upon phenomenological relations between the “macroscopic” deformations
and the “macroscopic stress”, cf. [8, 4]. Using the theory of mixtures the microstruc-
ture of the tissue can be considered in terms of the “pseudo–microscopic components”;
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for each one we have to define the constitutive law which is based on the macroscopic
deformation. The macroscopic stress is the superposition of the stresses which are
induced in the pseudo–microscopic components. The drawback of this approach is
evident: we can hardly regard the interactions in the microstructure.

Motivation for the research reported in this paper is to describe and understand
the geometrical effects which characterize contraction of the smooth muscle tissue.
In this study we shall consider a very simple model of the deforming smooth muscle;
its microstructure have the following features.

• The microstructure of the unstressed (unloaded) material is periodic.

• The muscle cells are modelled as incompressible inclusions embedded in the
isotropic (compressible) hyperelastic matrix.

• Viscosity of both the matrix and the fluid in the inclusions is neglected.

• The cytoskeleton is modelled using bars which are fitted on the boundary of
the muscle cells. The activated contraction is introduced through pre-straining
the bars.

The periodicity (at least the local periodicity) of the microstructure is critical for
applicability of the homogenization method. Although, in real tissue this assumption
is not satisfied accurately, it is possible to find an artificial microstructure which is
“statistically equivalent” with the real one and which is periodic. Such a step is
used often also when modelling engineering composite materials, for which the strict
periodicity cannot be guaranteed in the technological process.

2. Periodicity of the microstructure

We consider a composite material which is constituted by the hyperelastic matrix and
periodically spaced microscopic incompressible inclusions. The problem is defined at
the macroscale and at the microscale, cf. [1], which are associated with two coordinate
systems X and Y , respectively. The two scales are related each other by the scaling
parameter ε, so that

y =
x

ε
, x ∈ X , y ∈ Y . (1)

As usually we assume the size of the micro-heterogenities is very small and, therefore,
we consider ε→ +0. In contrast with the small deformation case when treating large
deformation the periodicity assumption is valid only locally in a vicinity of x.

Let Ω ⊂ X be the domain (of dimension 2, or 3) occupied by the composite
material and consider the decomposition (see [2] for reticulated structures):

Ω = Ωε
m ∪ T ε ∪ ∂T ε, (2)

where Ωε
m (the matrix) is a connected domain occupied by the neo-Hookean material,

T ε consists of all disconnected incompressible inclusions. At the microscale equipped
with the coordinate system Y we consider (locally in X ) periodic system of cells. The
reference cell Y ∈ Y is decomposed according to (2), i.e. Y = Ym ∪ T ∪ ∂T .

The Kirchhoff stress τij in the two compartments is defined as follows

matrix: . . . τij = −Jδij p+ µJ−2/3dev bij ,

inclusions (fluid): . . . τij = −Jδij p ,
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Figure 1: Decomposition of the macroscopic domain Ω (left) and the corresponding
decomposition of the reference cell Y (right).

where p is the pressure, bij is the left Cauchy–Green deformation tensor, J = det(bij)
1/2

is the relative volume change and µ is the shear modulus. The stress in whole the
domain Ω can be described uniformly as

τ ε
ij = −Jεδijp

ε + µε(Jε)−2/3dev bεij , (3)

pε = −γε(Jε − 1) , (4)

using oscillating material coefficients µε(x) and γε(x)

µε(x) =

{
µ, x ∈ Ωε

m

0, x ∈ T ε,
, γε(x) =

{
γ, x ∈ Ωε

m

γ∞, x ∈ T ε,
, (5)

where µ, γ and γ∞ are constants. If γ∞ → +∞, the inclusions become incompressible.

3. Modelling the contractile filaments

The smooth muscle cell, see Fig. 2, can be modelled as an ellipsoidal balloon filled
with the incompressible fluid. It is assumed, that the mechanical properties of the
cell depend predominantly on the network of filaments which stiffen the structure.
These also involve the contractile filaments which, in response to their activation,
develop forces acting on the surface of the cell, being fixed in the dense bodies.

Figure 2: Arrangement of filaments in smooth muscle cell (left); model of contractile
fibres (right).

In order to treat action of the contractile filaments at the microscopic reference
domain Y , we consider boundary tractions fi(y), y ∈ ∂T . The virtual work of the



filament fixed at y[r] ∈ ∂T for r ∈ I ≡ {1, 2, 3, . . . } is defined in terms of the Dirac
distribution function δD(y[r], y) as follows:∫

∂T

f
[r]
i (y) vi(y) dSy =

∫
∂T

f̄
[r]
i δD(y[r], y) vi(y) dSy = f̄

[r]
i vi(y

[r]) , (6)

where the f̄
[r]
i is the contractile force acting at y[r] and vi is the virtual displace-

ment. We recall that Y is only the “local” reference domain, which is valid in a
neighbourhood of some x ∈ Ω; for brevity we do not indicate it explicitly in (6).

In fact f̄
[r]
i are internal forces of the microstructure; for each index [r] there is [s]

such that the points y[r] and y[s] define the bar (the filament) connecting two points

on ∂T . Further, it holds that f̄
[r]
i = −f̄ [s]

i . Therefore, the virtual work involving
actions of all bars of the cytoskeleton can be written as∫

∂T

∑
r∈I

f
[r]
i (y) vi(y) dSy =

∑
r∈I

f̄
[r]
i vi(y

[r]) =
∑

r∈R,s=s(r)

f̄
[r]
i (vi(y

[r])− vi(y
[s])) , (7)

where s = s(r) is the corresponding index.

In this paper we consider the following definition of f̄
[r]
i . Let ψ(θ) ≥ 0 be the

strain energy function and denote by α the activation parameter; we define

f̄
[r]
i = α ν

[r]
i

∂

∂θ
ψ(θ[r] − θ0) , i = 1, 2, (3) , (8)

where θ0 is the active pre-straining and ν
[r]
i is directional unit vector of the bar which

is associated with the point y[r]. We assume that the filaments have no resistance in
compression, so that ψ may have the following form:

ψ(θ) =

{
1
6
Eθ3 , for θ ≥ 0 ,

0 , for θ < 0 ,
(9)

where E is the elasticity constant and θ can be defined as the engineering strain
(i.e. the bar elongation related to its initial length). It should be emphasized, that
this simple model of active filaments does not allow for capturing dynamical features
of muscle contraction. For simplicity we take α ∈ {0; 1}, so that the intensity of
contraction is given purely by the pre-straining parameter θ0; Sthe lesser θ0 < 0, the
higher contraction force can be generated.

From (8),(9) we see that (7) is a nonlinear function of displacements. The first
order approximation in displacements yields(

f̄
[r]
i

)new

≈
(
f̄

[r]
i

)old

−B
[r]
ik ∆u

[r]
k , (10)

where, denoting by l[r] and l
[r]
0 the actual and the undeformed lengths of the bar,

respectively, B
[r]
ik is given as

B
[r]
ik ≡

(
ν

[r]
i ν

[r]
k + δik

)
α

1

l
[r]
0

∂

∂θ
ψ(θ[r] − θ0)+

+ ν
[r]
i ν

[r]
k α

1

l[r]
∂2

∂θ2
ψ(θ[r] − θ0) .

(11)



In the following section we formulate the equilibrium equation for ε > 0, i.e. we
consider finite scale heterogenities in the macroscopic domain Ω. For this case we
also need the corresponding terms which describe action of the filaments.

Let Ωρ,ε
S ⊂ Ω such that Ωρ,ε

S → ∂T ε for ρ→ 0. The virtual work of the contraction
forces is given by∫

Ωρ,ε
S

1

ε
f ε

i (x) vi(x) dx , where f ε
i (x) = α νε

i (x)
∂

∂θ
ψ(θε(x)− θ0) . (12)

Above θε(x) is the strain in the fibre which is fixed at the point x ∈ Ωρ,ε
S . Introducing

the one-to-one mapping T : x → x̄, x, x̄ ∈ Ωρ,ε
S , we define θε(x) = νε

i (x)(u
ε
i (x̄) −

uε
i (x))/l

ε
0(x) where uε are displacements and lε0(x) is the undeformed length. To

summarize, we treat a system of “continuously” distributed forces in Ωρ,ε
S . Using the

two-scale convergence for ε −→ 0 we have that

f ε
i (x)⇀f 0

i (x) weakly in L2(Ω) ,

where f 0
i (x) = |Y |−1

∫
Y ρ

S
fi(x, y) dy, y = x/ε, the microscopic domain Y ρ

S is associated

with Ωρ,ε
S . If νε

i (x) = −νε
i (x̄) we have the system of couple-wise applied forces, so that

we obtain f 0
i (x) ≡ 0. This is the necessary condition, because otherwise the virtual

work is unbounded due to presence of 1/ε in (12).

4. Updated Lagrangean formulation

We shall introduce the linearized equilibrium equation (15), where DTK ε
ijkl is the Trues-

dell rate of the Kirchhoff stress, eij and ηij are the linear and nonlinear parts of the
Green strain related to the updated reference configuration

Let ∂ΩD ⊂ ∂Ω be the part of the boundary where the increments of displacements
∆u are prescribed. We need to define spaces of admissible displacement increments

V (Ω) = {v ∈ [W 1,2(Ω)]n | vi = ∆ui on ∂ΩD, i = 1, . . . , n} , (13)

V0(Ω) = {v ∈ [W 1,2(Ω)]n | vi = 0 on ∂ΩD, i = 1, . . . , n} , (14)

where n = 2, 3 is the dimension of Ω and W 1,2(Ω) is the Sobolev space.
It is now possible to define the deformation (linear) sub-problem for computing

the displacement and pressure increments in our heterogeneous material with pre-
strained fibres: Find ∆uε ∈ V (Ω) and ∆pε ∈ L2(Ω), so that∫

Ωε
m

DTK ε
ijkl ekl(∆u

ε)eij(v
ε)

1

Jε
dx−

[∫
Ωε

m

∪
∫

T ε

]
∆pε divvε dx+

+

∫
Ωε

m

τ ε
ij δηij(∆u

ε; vε)
1

Jε
dx+

∫
T ε

pε∂∆uε
i

∂xj

∂vε
j

∂xi

=∫
Ωρ,ε

S

1

ε
f ε

i v
ε
i dx+ Lnew(vε)−

∫
Ωε

m

τ ε
ijeij(v

ε)
1

Jε
dx+

∫
T ε

pε divvε dx

(15)

for all vε ∈ V0(Ω) and∫
Ω

1

γεJε
∆pε qε dx = −

∫
Ω

qε div∆uε dx, for all qε ∈ L2(Ω) . (16)



We remark that the above integrals are evaluated over the current reference configu-
ration Ω = Ω(t) and Lnew(v) is the linear functional involving all boundary tractions
and volume forces imposed at time (t + 1). The new configuration at (t + 1) is
obtained using the displacement and pressure increments: uε (t+1) := u(t) + ∆uε,
pε (t+1) := pε (t) + ∆pε.

5. Microscopic and macroscopic problems

We employ the standard technique to derive equations of the microscopic problem,
cf. [1]. For ∆uε and ∆pε we use the following asymptotic expansion (The analogous
expansion is taken for the test functions vε and qε.)

∆uε(x) = ∆u0(x) + ε∆u1(x, y) + . . . , (17)

∆pε(x) = ∆p0(x, y) + ε · . . . , (18)

where x ∈ Ω, y ∈ Y and ε is the scaling parameter, i.e. x = εy. The functions
∆uk(x, y) and ∆pk(x, y), k = 0, 1, . . . are assumed to be Y-periodic. Here we omit
the details concerning derivation of the microscopic problem, see [7]. The pressure
field in domain T is constant as a function of y (incompressible fluid in a closed
volume T ), so that we have p0(x, y) = p̄0(x) for y ∈ T .

We remark also that due to the term 1/ε involved in the first right hand side in(15),
where we substitute vε

i (x) := 0 + εwi(x/ε)ϑ(x) with periodic function wi(x/ε), we
have the following weak convergence in L2(Ω) for ε→ 0:

1

ε
f ε

i (x) εwi(x/ε) ⇀
1

|Y |

∫
Y ρ

S

fi(x, y)wi(y) dy .

Above we use the extension of f ε
i (x) by zeros from Ωρ,ε

S to whole Ω. For ρ → 0 the
domain integral over Y ρ

S transforms to the boundary integral over ∂T . So that using
results of Section 3 we have for ρ→ 0 that∫

Y ρ
S

fi(x, y)wi(y) dy →
∑

r∈R,s=s(r)

f̄
[r]
i (wi(y

[r])− wi(y
[s])) . (19)

We shall now introduce the characteristic response functions, which couple the
micro- and the macro-responses (we use the abbreviation ∂x

l vk(x) = ∂vk(x)/∂xl):

∆u1
i (x, y) = −χkl

i (x, y) ∂x
l ∆u0

k(x), i = 1, . . . , n (20)

∆p0(x, y) = −πkl(x, y) ∂x
l ∆u0

k(x), (21)

∆p̄0(x) = −π̄kl(x) ∂x
l ∆u0

k(x). (22)

We shall need the space of (locally) admissible displacements [1]:

H#(Y ) ≡ {v ∈ [W 1,2(Y )]n | v is Y-periodic,

∫
Y

v(y)dy = 0}. (23)

The microscopic problem is defined as follows, cf. [6, 7]. Let the deformed microscopic
configuration be in the equilibrium. For a fixed x ∈ Ω and k, l = 1, . . . , n find



χkl ∈ H#(Ym), πkl ∈ L2(Ym) and π̄kl ∈ IR, so that

aYm(χkl − Πkl, w) + bYm(χkl − Πkl, w)

−(πkl, divyw)Ym + π̄kl(1, divyw)Ym

+
∑
r∈R

s=s(r)

B
[r]
ij

((
χkl

j

)[r] −
(
χkl

j

)[s] −
(
y

[r]
l − y

[s]
l

)
δkj

) (
w

[r]
i − w

[s]
i

)
= 0, (24)

∀w ∈ H#(Ym),

1

γ

(
1

J
πkl, q

)
Ym

+ (q, divyχ
kl)Ym − (q, divyΠ

kl)Ym = 0, (25)

∀q ∈ L2(Ym),

(1, divyχ
kl)Ym = −|T |δkl , (26)

where Πkl
i ≡ yl δki and

aYm(u, v) =

∫
Ym

(
DtTK

ijkl + Jp̄0δijδkl

)
ey

kl(u) e
y
ij(v)

1

J
dy ,

bYm(u, v) =

∫
Ym

(
τijδkl − Jp̄0δkjδli

)
∂y

i uk ∂
y
j vl

1

J
dy .

Eq. (25) results from the constitutive equation for the pressure increment in Ym,
whereas (25) expresses the incompressibility in T . Note that due to the non-symmetry
of τijδkl in bYm(·, ·) the characteristic functions are not symmetric in k, l, i.e. χkl

i 6= χlk
i ,

πkl
i 6= πlk

i , π̄kl
i 6= π̄lk

i .
Using the characteristic response functions we compute the homogenized stiffness

coefficients Q̂ijkl; employing the abbreviation Ξkl = χkl − Πkl it holds that

Q̂ijkl ≡
1

|Y |

[
cYm(Ξkl,Ξij) +

1

γ

(
1

J
πij, πkl

)
Ym

]
+

+
1

|Y |
∑
r∈R

s=s(r)

B
[r]
mh

((
Ξkl

m

)[r] −
(
Ξkl

m

)[s]
) ((

Ξkl
h

)[r] −
(
Ξkl

h

)[s]
)
,

(27)

where for simplicity of notation we used cYm(u, v) ≡ aYm(u, v) + bYm(u, v). The
stiffness tensor Q̂ijkl is symmetric only in “ij kl = kl ij”.

The macroscopic problem reads as follows: Given distribution of Q̂ijkl, the aver-
aged Cauchy stress 〈J−1τij〉Y =

∫
Y
τijJ

−1 dy,

〈J−1τij〉Y =
1

|Y |

[∫
Ym

1

J
τij dy − p̄ |T |+

∑
r∈R

α ν
[r]
i ν

[r]
j

∂

∂θ
ψ(θ[r] − θ0)

]
, (28)

and the external load functional Lnew(·), compute ∆u0 ∈ V (Ω) such that∫
Ω

Q̂ijkl ∂
x
l ∆u0

k ∂
x
j vi dx = Lnew(v)−

∫
Ω

〈J−1τij〉Y ex
ij(v) dx, ∀v ∈ V (Ω) . (29)

The homogenized coefficients depend on the local deformed microstructures, so that
to recover their distribution in Ω large number of microscopic problems should be
solved. In [7] an approximation scheme is suggested which makes the problem
tractable even for usual computing tools.



6. Computing cell contraction in homogeneous stress field

In this section we illustrate how the topology of the contractile filaments and the
mutual position of muscle cells influence deformation and stress in contracting tissue.
We may focus on uniform stress fields only, so that for computing the macroscopic
deformation we need only one reference microstructure for which we solve the micro-
scopic problems.

Topology of contractile filaments fixed at
the dense bodies.

a)

b)

c) d)

Figure 3: Example 1. Isotonic contraction for the rhombic microstructure: a) smooth
muscle cell (top) and the reference cell Y (bottom), b) non-active state, c) active pre-
straining θ0 = −0.09, d) active pre-straining θ0 = −0.30.

Let F̂ be the reference macroscopic deformation gradient. We want to compute
the components fij of f , so that we can update: F = f F̂ . Obviously fij − δij =
∂x

j ∆u0
i ≡ gij, which is obtained by solving (29). If the material is subjected to uniform

stress field σ̄ij, then, due to the macroscopic homogeneity, the displacement field ∆u0
i

is also uniform. Consequently, (29) reduces to (for 2D problems(!))
Q̂1111, Q̂1122, Q̂1112, Q̂1121

Q̂2211, Q̂2222, Q̂2212, Q̂2221

Q̂1211, Q̂1222, Q̂1212, Q̂1221

Q̂2111, Q̂2122, Q̂2112, Q̂2121

 ·


g11

g22

g12

g21

 =


σ̄11

σ̄22

σ̄12

σ̄21

−


〈σ11〉
〈σ22〉
〈σ12〉
〈σ21〉

 , (30)



where 〈σij〉 is the abbreviation for the averaged Cauchy stress employed in (29). It

should be remarked that the coefficients Q̂ijkl as well as 〈σij〉 in (30) are computed
for the reference microstructure Y , which is in equilibrium state; to achieve this state
microscopic equilibrium problems must be solved iteratively, cf. [7].

In our numerical simulations we considered two periodic microstructures, the
rhombic one, Example 1, Fig. 3, and the rectangular one, Example 2, Fig. 4. For
both the microstructures we choose the same material parameters and the same shape
of the cells, however, the topology of the contractile filaments differs. We study the
isotonic contraction with the loading stress applied in the “x” axis, i.e. 〈σij〉 = 0 for
i, j 6= 1.

Topology of contractile filaments fixed at
the dense bodies.

a)

b)

c) d)

Figure 4: Example 2. Isotonic contraction for the rectangular microstructure: a)
smooth muscle cell (top) and the reference cell Y (bottom), b) non-active state, c)
active pre-straining θ0 = −0.05, d) active pre-straining θ0 = −0.30.



7. Conclusion

In Figs. 3 and 4 we display deformed mi-
crostructures, which were computed in a sequence
of linear subproblems (30). It is evident that the
deformation strongly depends on relative position
of the cells, as well as on the topology of the con-
tractile filaments inside the cell. The differences

Example 1: Example 2:
θ0 -0.05 -0.3 -0.05 -0.3
λ1 0.82 0.76 0.81 0.74
λ2 1.17 1.34 1.20 1.30

Tab. 1.

between the macroscopic stretches are introduced in Tab. 1.

In this paper we presented the simplified model of contracting muscle cells. Advantage
of the approach reported here is that it regards very precisely the geometrical features
of the microstructure and, thereby, interactions between microscopic constituents
(cells and the matrix in this case). One of the crucial difficulties emerges when
nonuniform macroscopic deformation develops, as discussed in [6, 7, 9]. The further
work will be focussed on modelling the mechanical connections between adjacent cells.
Also more complex constitutive laws for the matrix, intracellular substance and the
cytoskeleton should be considered; this, however, will be conditional on availability
of specific physiological and histological results.
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[8] E. Rohan and R. Cimrman, Optimization methods in material identification for com-
posite model of resting smooth muscle, Proceedings of the conference Engineering
Mechanics 2000, Vol. III, pp 59–64, Svratka 2000.

[9] N. Takano, Y. Ohnishi, M. Zako and K. Nishiyabu, The formulation of homogenization
method applied to large deformation problem for composite materials, Int. J. Solids
Struct. 37, (2000), 6517-6535.


