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Abstract: The paper deals with the bone tissue modelling as a micropolar
continuum. Isotropic and orthotropic constitutive relations were used for the
description of the material. A simple bone specimen under torsional load was
studied as well as a femur with hole and steel nail in order to determine stress
and deformation distribution and to compare the behaviour of the isotropic
and orthotropic micropolar materials.
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1 Introduction

From the biomechanical point of view the living tissues are the most complex me-
chanical structures. Their hierarchical nature and the active behavior in longer (bone
remodelation, aging) or shorter (e.g. muscle activation) time periods are the typical
properties. Another important feature is the non-homogenity and non-uniformity.
Even such highly organized tissue like striated muscles diffres significantly in vari-
ous body parts. Large differences can be observed also among groups of human or
animal individuals. These reasons cause that the commonly used continuum mod-
els covered by the commercial software do not give satisfactory results. In the last
decade new theories appeared trying to cope with these difficulties. One of the most
developed seems to be the microcontinuum theory established by Eringen and his
co-workers (see e.g. [3, 4]). Although there are some new theories like unified theory
of generalized continuum (Sansour, [11]), we decided to apply for the proposed bone
modeling the special type of Eringen’s microcontinuum theory — the micropolar
continuum. The main reason for this decision is published information about the
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material parameters ([5, 6]). The second reason is that the micropolar continuum
theory seems to be relatively simple in comparison with other theories. This con-
tribution follows our previous papers ([9, 10]) dealing with the isotropic micropolar
models of bones and enriches models by involving the orthotropy. Studying the
structure of bones reveals that even the anisotropy is typical here. We limit our
study to the small deformation concept which allows us to use linear formulation of
the whole problem. Considering the physiological activities the small deformation
assumption seems to be adequate. Since the main goal is to increase the accuracy of
determination of stresses and deformations in the neighbourhood of different kinds
of bone protheses we focus our attention on a femur with hole and a steel nail. The
influence of the micropolarity and orthotropy on the stress distribution along the
hole is studied.

2 Microcontinuum theory

Comprehensive description of the microcontinuum theory can be found e.g. in [4].
Here we will introduce only the basic concept necessary for the definition of the
corresponding boundary value problems.

In the microcontinuum theory, a particle is associated to the every point of
continuum, occupying the microvolume dV ′ and obeying both the spherical motion
and deformation. The position of the point is given in the original configuration by
the vector x and in the current configuration by y. The position of an arbitrary
point inside the particle is then given in both configurations by ξ and η respectively,
therefore x′ = x + ξ, y′ = y + η. After we introduce macrovolume dV and the
elements of microsurface dS ′ and of macrosurface dS, the momentum balance law
in Eulerian approach can be written in form

tkl,k + ρfl = 0, mklm,k + tml − sml + ρ(llm − σlm) = 0, (1)

where slm denotes the micro-stress average, i.e. stress tensor of the macrovolume
averaged across the volume (symmetric); tkl is the stress tensor of the macrovolume
averaged across the surface (non-symmetric); mklm is the first stress moment, i.e.
moment of the forces acting on the surface of the macrovolume with respect to
its centre of gravity; llm denotes the first body moment of the volume forces with
respect to the centre of gravity of the macrovolume; and finally f l represents the
averaged volume force.



Defining relations are the following

tkldsk =
∫
dS

t′klds′k, ρf ldV =
∫
dV

ρ′f ′ldV ′,

mklmdsk =
∫
dS

ηmt′klds′k, slmdV =
∫
dV

t′lmdV ′,

ρllmdV =
∫
dV

ρ′ηmf ′ldV ′,

(2)

where t′kl is the stress tensor in a particle, t′kl = t′lk;
Further step is to introduce the proper strain measures. According to [3] the three

tensor strain measures are the Cauchy’s deformation tensor, CKL = yl,Ky
l
,L, and the

micro-deformation tensors, ΨKL = yl,Kχ
l
L, ΓKLM = yl,Kχ

l
l,M , where χlk = ∂ηl/∂ξk,

χlk = ∂ξl/∂ηk, yl,L = ∂yl/∂xL.
If we introduce the displacement vector u and the rotation matrix [Φij], the

following useful relations can be written for the linear micromorphic continuum [4]

ΨKL − δKL = εklδkKδlL, CKL − δKL = 2εklδkKδlL,
ΓKLM = γklmδkKδlLδmM , εkl = ul,k − φlk,

2ekl = φkl + φlk, γklm = φkl,m.
(3)

The simplest type of the microcontinuum is the micropolar continuum, where
the particle undergoes only the spherical motion (without any deformation). Then

λklm = mklm = −1

2
elmrmkr, lkl = −1

2
eklrlr, (4)

where mkr is the couple stress tensor, and lr is the body couple density; elmr is Levi-
Civita tensor. The basic equations for the micropolar continuum have the following
form:

tkl,k + ρfl = 0, mkl,k + elmntmn + ρll = 0, (5)

where
tkl = ρ ∂Ψ

∂ΨKL

∂yk
∂xK

χlL, mkl = ρ0
∂Ψ
∂ΓLK

∂yk
∂xk

χlL,

ΨKL = yk,KχkL, ΓKL = 1
2
eKMNχkMχkN .

(6)

The next set of equations necessary to define the boundary value problem are the
boundary conditions

uk = ûk
φk = φ̂k

}
on ∂Ω1,

tklnk = t̂l
mklnk = m̂l

}
on ∂Ω2. (7)



To complete the set of equations a material constitutive law must be chosen. The
basic constitutive equations of anisotropic micropolar thermoelastodynamics were
derived by Eringen (see e.g. [4]) as

tkl = Aklmnεmn + Cklmnγmn,
mkl = Cmnlkεmn +Blkmnγmn.

(8)

There are restrictions following from the requirement of stability of the material
thermodynamic state. The thermodynamic state of the micropolar body is said to be
stable if and only if the internal energy function is nonnegative for all temperatures
and strains, i.e. if the strain energy decreases (increases) with decreasing (increasing)
strains and temperatures. This restriction can be generally expressed as a quadratic
form

U ≡ 1

2

(
ρC0

T0

T 2 + λαβwαwβ

)
≥ 0, α, β = 1, 2, . . . , 18, (9)

where wα represents the components of a vector in a 18-dimensional vector space
corresponding to nine components of both εkl and γkl. The symmetric matrix λαβ
consists of linear combination of Aklmn, Bklmn, and Cklmn. Continuity requirements
are also assumed (see Eringen, [4]), e.g. Aklmn = Amnkl. The restriction (9) is
fulfilled if C0 ≥ 0 and λαβwαwβ ≥ 0 is positive semidefinite.

For isotropic materials, the material symmetry group is the full group of orthog-
onal transformations [4]. Consequently, we take

Aklmn = λδklδmn + (µ+ κ)δkmδln + µδknδlm,
Bklmn = αδklδmn + βδknδlm + γδkmδln,

Cklmn = 0,
(10)

and finally we obtain the constitutive relations of the form

tkl = λεmmδkl + (µ+ κ)εkl + µεlk,
mkl = αγmmδkl + βγkl + γγlk.

(11)

To satisfy the stability requirements we write following conditions imposed upon
isotropic material moduli

3λ+ 2µ+ κ ≥ 0, 2µ+ κ ≥ 0, κ ≥ 0,
3α + β + γ ≥ 0, γ + β ≥ 0, γ − β ≥ 0.

(12)

For orthotropic material, the material symmetry group is C3 symmetry group
(Zheng and Spencer, [13]). Since we suppose material orthotropy only in the case of



macroscopic strain and isotropy on the microscopic scale, the constitutive relations
can be rewritten as

tkl = Aklmnεkl, mkl = αγmmδkl + βγkl + γγlk, (13)

whereAklmnεmn = Mαβwβ; k, l,m, n = 1, 2, 3; α, β = 1, 2, . . . , 9; w = [ε11, ε22, ε33, ε12,
ε13, ε23, ε21, ε31, ε32]T ; and the micropolar elasticity matrix (symmetric) has the form

Mαβ =



M0 M3 M4 0 0 0 0 0 0
M3 M1 M5 0 0 0 0 0 0
M4 M5 M2 0 0 0 0 0 0
0 0 0 M6 0 0 M12 0 0
0 0 0 0 M7 0 0 M13 0
0 0 0 0 0 M8 0 0 M14

0 0 0 M12 0 0 M9 0 0
0 0 0 0 M13 0 0 M10 0
0 0 0 0 0 M14 0 0 M11


. (14)

The thermodynamic state stability conditions can be alternatively written as

|Mαα| > 0, ∀α = 1, . . . , k, k = 1, 2, . . . , 9. (15)

In [9] a variational formulation of the boundary value problem (5), (7), (8) is
shown. The solution can be found as the stationary point of the potential∏

(u, φ) = 1
2

∫
Ω

(Aklmnεmn + Cklmnγmn)εkldx

+1
2

∫
Ω

(Cmnlkεmn +Blkmnγmn)γlkdx+
∫
∂Ω2

(ûinj + gij)τ
ijds

+
∫
∂Ω2

(φ̂knl + γkl)m
kldx−

∫
Ω

ρf̂iuidx−
∫
∂Ω1

τ̂iuidx−
∫
Ω

ρl̂ldx

(16)

with the constrains

εkl = ∂ul

∂xk
+ elkmφm, γkl = ∂φk

∂xl
,

−uinj = gij on ∂Ω2, −φiuj = γij on ∂Ω2,
(17)

where gij is an auxiliary variable. Then the weak solution of the problem (5), (7),
(8) satisfies the conditions (we omit loading terms for brevity here)∏

(u, φ; δu) = 0→
∫
Ω

τklδuεkldΩ = 0,∏
(u, φ; δu) = 0→

∫
Ω

(τklδφεkl +mklδφφl,k)dΩ = 0.
(18)

Following the approach presented in [9] the finite element discretization of micropolar
continuum was used in a home made FEM package developed by the authors and
applied to the above described boundary value problem.



3 Micropolar model of the bone tissue

Figure 1: Displacement field (20× magnified) of the brick specimen.

In [4, 6] the experimentally obtained material parameters for the corticoidal bone
are published:

Young’s modulus [Pa] E = 2G(1 + ν)
Poisson ratio ν = λ/(2λ+ 2µ+ κ) = 0.4
Coupling number N = 0.9

Characteristic length of microstructure [m] c =
√
γ(µ+ κ)/κ(2µ+ κ)

Characteristic length for torsion [m] ltorsion = 0.2 · 10−3

Characteristic length for bending [m] lb = lt/
√

3 = cN
Shear modulus [Pa] G = 4.5 · 109

Polar ratio ψ = 1.5

Using the formulas λ = 2ν
1−2ν

G, µ = 1−2N2

1−N2 G, κ = 2N2

1−N2G, α = 2(1−ψ)
ψ

l2tG, β = 2
3
l2tG,

γ = 2β = 4
3
l2tG, the material parameters used in isotropic constitutive equations

(11) can be obtained: λ = 1.8 · 1010 [Pa], µ = −1.468 · 1010 [Pa], κ = 3.837 · 1010

[Pa], α = −120 [N], β = 120 [N], γ = 240 [N].

Equivalent linear elastic Lamé coefficients can be acquired using the formulas
λE = λM , µE = µM + κ/2, where subscripts E, M denote elastic and micropolar
coefficients respectively. This gives us λE = 1.8 · 1010 [Pa], µE = 4.5 · 109 [Pa] and
hence E = 1.26 · 1010 [Pa], ν = 0.4.

Material parameters used in constitutive relation of the orthotropic microcontin-
uum were equivalent to those of the isotropic microcontinuum except the micropolar



Figure 2: Left: Strain tensor component eyz along the bottom element row in respect
to x axis. Right: Femur example: Lines on the hole surface.

elasticity matrix components M8 and M11 whose values were chosen twice greater
than the previously determined isotropic parameters, that is M8 = M11 = 2(µ+ κ).

Two main examples were studied: (1) Brick-like compact bone specimen under
torsional load; (2) Human femur with steel nail. The bone specimen under torsion
was modelled as micropolar isotropic and orthotropic solid according to experimen-
tal and computational observations presented in [6]. Top plane nodes degrees of
freedom were fixed and the torsional load was applied at the bottom plane. There
are apparent differences in behaviour of isotropic and orthotropic materials studied
shown in Figures 1 and 2.

Micropolar isotropic and orthotropic femur with a steel nail undergoing bending
and torsion was also studied. Material parameters given above were used in the case
of the isotropic model. The following material parameters (in [GPa]) were used for
modelling the orthotropic bone:

M0 = 22.4 M1 = 25.0 M2 = 35.0 M3 = 14.0 M4 = 15.8
M5 = 13.6 M6 = 22.2 M7 = 22.7 M8 = 23.2 M9 = 22.2
M10 = 22.7 M11 = 23.2 M12 = −16.1 M13 = −15.6 M14 = −15.0.

Bending load: We investigate the influence of the microstructure on the stress
computed along lines on the surface of the drilled hole in the bone (Figure 2 right).



In Figure 4 we plot the ”averaged” (in the least squares sense) t33 stress in the 2
rows of elements on ”front” and ”back” curves denoted 1, 2 respectively in Figure
4 and in rows one element diameter above these rows; the abscissa relates to the x
coordinate of element centers. Note: We plotted separate figures for the particular
rows of elements because of the different behaviour in the middle and the upper
element row, e.g. on the front line, the middle row stresses are tensile, while the
upper (and lower) row stresses are compressive. Analogously on the back line, the
middle row stresses are compressive, while the upper (and lower) row stresses are
tensile.

Torsion load: In this case there is no fundamental difference among the element
rows as in the previous case; the ”averaged” (least squares with the third order
polynomial) t22 is plotted in Figure 4.

The influence of the ”micropolarity” on the stresses is clearly visible; more on
this example can be found in [10].

4 Conclusion

In this article we have presented a weak formulation of problems involving micropolar
continuum using isotropic and (macroscopically) orthotropic material relations. We
have compared numerical results of simple examples (a block specimen of bone
material, a femur bone with a steel nail) for micropolar isotropic and orthotropic
cases.

Simple example (a block specimen of bone material under torsion) was proposed
according to the study presented in [6]. There are apparent differences between
isotropic and orthotropic cases. Orthotropic material is more ”stiff” in torsion then
isotropic material due to higher orthotropic material parameters chosen in this study.

The femur example was studied in more detail in [9] for the isotropic case. Here
we have presented similar results for the orthotropic case, namely the (tangent) stress
curves along the hole in the bone and macroscopic displacements for bending and
torsion loads. The micropolar isotropic data correspond to linear elastic ones given
in [6] (human femur), while the micropolar orthotropic data come from [5] (bovine
femur). We have seen that for the bending case, the displacements diminish in the
orthotropic case, while, for the torsion load, they increase. Hence the orthotropic
data lead to a ”stiffer” bone for bending load modes then the isotropic data, and
”softer” for torsion loads.



Figure 3: Displacements (300× magnified) in bending and torsion.

Figure 4: Stress component t22 and t33 along the lines. P — bending, T — torsion,
M — middle row, U — upper row.

This study should be considered as a starting effort for introducing an anisotropy
into the micropolar bone model. Further research should involve a material identi-
fication procedure based on sensitivity analysis and experiments.
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