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Summary: The stepping stone in evaluating effective elastic prop-
erties of woven composite tubes is an accurate geometrical descrip-
tion of the composite tube on meso-scale taking the real geometry
of the fiber-tow into account. The relevant geometrical parameters
obtained from images of real microstructure are provided by a pow-
erful image analyzer Lucie. Furthermore, the periodic character of
a fiber-tows arrangement, typical for woven composites, reduces the
basic geometrical model to a certain periodic unit cell. Two specific
unit cells linked to two different homogenization approaches are in-
troduced. When subjected to suitable periodic boundary conditions,
the homogenized unit cells can be periodically extended to map the
effective elastic properties over the macroscopic domain under con-
sideration.
Keywords: Woven composite, micrograph, periodic unit cell, homog-
enization

Introduction

At present, composite materials are still more often used in civil engineering mainly
in rehabilitation and repair of concrete and masonry structures. Undoubtable bene-
fits offered by composite materials such as non corrosive properties, light weight, high
strength and, of course, design possibilities in shape, structures and colors are the main
reason for this boom. Increasing desire for reliable and low cost material systems results
in new inexpensive fabrication methods for even larger parts, which can be used in many
other applications such as bridge structures, facades and structural parts of commercial
and industrial buildings, etc. A polymer matrix system reinforced by glass or graphite
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Figure 1: Graphite fiber fabric–polymer matrix composite

fibers appears to be one of the most popular composite material systems. It has been
recognized for several years that overall response of such a composite is highly influenced
by micromechanical behavior of composite systems.

As suggested in [7, 8], multi-scale modeling is a very useful tool to determine the
overall material properties of composite materials and structures. The procedure usu-
ally starts by determining the effective elastic properties of a medium on a micro-scale
level, Fig. 1(c). To that end, probabilistic methods for homogenization [3, 7] are usually
applied. Numerical simulations on the micro-scale level combined with carefully selected
laboratory measurements should offer homogenized properties for fiber tow-epoxy ma-
trix mixture displayed in Fig. 1(c). Typically, standard homogenization process based
on either periodic unit cell models or the Hashin-Shtrikman variational principles is
performed at this level [9].

The next step requires homogenization on a meso-scale level using the geometry of
bundles embedded in a matrix, Fig. 1(b). A periodic character of woven composites
suggests to formulate a representative volume element in terms of a certain periodic
unit cell. Two geometric variants of the periodic unit cell to model interactions between
individual phases are presented in Section 1. Each model is linked with a specific ho-
mogenization technique. The first approach assumes the original geometric model to be
discretized into N1xN2xN3 pixels. Each pixel represents a center of a cubic element with
certain homogenized properties. An iterative numerical method based on Fast Fourier
Transforms [5] is then used to evaluate the effective properties of the periodic unit cell.
This approach is outlined in Section 3. The second approach, discussed in Section 2,
employs the finite element method to solve the relevant boundary value problem. The
computational model relies on interconnecting bundles by the polymer matrix contact
elements.

Having the effective properties on the meso-scale the procedure concludes with the
macroscopic analysis of a large composite structural part, Fig. 1(a).



Figure 2: Weave lay–up

Figure 3: Crossing of bundles

1 Geometrical model on meso-scale

For modeling purposes we limit our attention to a two-ply composite tube. De-
pending on winding speed and orientation the number of bundles within periodically
repeating regions may vary. In our particular case, the meso-scale unit cell consists of
two plies where each ply contains six bundles. The bundle is formed by unidirectional
graphite fibers (approximately 12000 fibers within a bundle) bonded to the polymer ma-
trix. Overall properties of this mixture are found from homogenization procedure carried
out on the micro-scale [9]. All six bundles are aligned along the same direction, but they
run through individual plies thus creating a typical woven structure of the composite.
This is shown schematically in Fig. 2. Fig. 3 depicts an intersection exchange of two
bundles, which propagate from one ply into the other.

The shape of the bundle cross-section is derived from images of real composite struc-
ture. One typical section is displayed in Fig. 4(a) showing a portion of the bundle cross-
section and together with longitudinal variation of the bundle middle curve. With the
help of the image analyzer LUCIE such a micrograph can be transformed into a binary
image and further analyze to provide all geometrical parameters to build an idealized
geometrical model such as the one shown in Fig. 4(b).

The microscopic images of a real tube suggest that every bundle is impregnated by the
polymer matrix, the thickness of which is about 0,03 mm. The interface layer between the
two bundles is approximately 0,02 mm thick. The same thickness is considered between
the two bundles, which are parallel to each other and lay in the same ply. To simplify
the geometrical model it is contemplated that the shape of the bundle cross-section is
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Figure 4: Geometry of fiber bundle

kept constant along the whole bundle. The bundle itself is created by translating the
bundle cross-section along the middle-curve, recall Fig. 4(a). A section of the resulting
unit cell generated using the above assumptions appears in Fig. 5(a).

(a) (b)

Figure 5: Geometrical model of the unit cell – idealization

Such a geometrical model, however, is not very suitable for computational modeling
using the finite element method. The main drawback is a very thin interface layer. Its
discretization results in very small elements spread over large region of the unit cell
thus leading to enormous computational effort, while not substantially increasing the
accuracy of the numerical model. Therefore, in order to arrive at a feasible numerical
model, some action must be taken. A suitable method of attack appears in replacing
the interface layer by contact elements with zero thickness and appropriate interfacial
properties. A section of such a model is depicted in Fig. 5(b). This particular model
is used in conjunction with standard homogenization procedure discussed in Section 2.
An example of a bundle mesh is shown in Fig. 6 obtained using the automatic mesh
generator [6]. On the other hand, a literature offers a powerful homogenization method
based on Hashin and Shtrikman [3] idea combined with the Fast Fourier Transform to
solve the resulting equations [5], which can be exploited in conjunction with the original
unit cell model, Fig. 5(a).

Figure 6: Bundle meshing



2 Homogenization based on Finite Element Method

Here we limit our attention to pure mechanical loading and define the following
mechanical loading problems

u0(x) = E · x x ∈ S, (1)

p0(x) = Σ · n(x) x ∈ S, (2)

where u0 and p0 are the displacement and traction vectors on the external boundary S
of a representative volume element Ω of the composite; n is the outer unit normal to S;
E and Σ are the applied macroscopic uniform strain and stress fields, respectively. The
macroscopic constitutive relations are then provided by

〈σ(x)〉 = 〈L(x)ε(x)〉 =
2∑

r=1

crLr 〈εr(x)〉 = LE (3)

〈ε(x)〉 = 〈M(x)σ(x)〉 =
2∑

r=1

crMr 〈σr(x)〉 = MΣ, (4)

where 〈·〉 stands for the spatial average of a given field, cr is the volume fraction of
the rth phase, and L and M are the effective stiffness and compliance matrices of the
heterogenous material, respectively. Eqs. (3) and (4) follow directly from Hill’s lemma
[4]. He proved that for compatible strain and equilibrated stress fields the following
relation holds 〈

ε(x)Tσ(x)
〉

= 〈ε(x)〉 T 〈σ(x)〉 , (5)

and consequently

ET LE = 〈ε(x)TL(x)ε(x)〉, (6)

ΣT MΣ = 〈σ(x)TM(x)σ(x)〉. (7)

Eq. (5) states in fact that the average of “microscopic” internal work is equal to the
macroscopic work done by internal forces. The above relations provide the stepping
stone for the derivation of effective properties of composite materials.

Two specific approaches corresponding to loading conditions are mentioned. The first
formulation is based on strain approach. We assume that the PUC (a periodic unit cell)
is subjected to boundary displacements u0 resulting in a uniform strain E throughout
the body. The second one is based on stress approach. It means that the PUC is loaded
by overall stress Σ. Details can be found in [7].

3 Homogenization based on Fast Fourier Transforms

The formulation starts with the definition of a reference medium L0. Then, consti-
tutive equations can be written in the form

σ(x) = L(x)ε(x) = L0ε(x) + τ (x), (8)

where τ is the stress polarization tensor given by

τ (x) = (L(x) − L0)ε(x). (9)



Figure 7: The periodic unit cell for FFT

Once the polarization stress is known, the strain field ε(x) can be obtained via Green’s
function Γ, corresponding to a given reference medium

ε(x) = E −
∫
Ω
Γ(x− x′)τ (x′)dx′. (10)

After inserting relation (9) into (10), we obtain the so called periodic Lippmann-Schwinger
integral equation for a given medium

ε(x) +
∫
Ω
Γ(x− x′)(L(x′) − L0)ε(x

′)dx′ = E. (11)

This equation can be solved by the following iterative procedure:

εk+1(x) = E−
∫
Ω
Γ(x− x′)(L(x′) − L0)ε

k(x′)dx′. (12)

Using the relation

ε(x) = E +
∫
Ω
Γ(x− x′)L0ε(x

′)dx′ (13)

we finally arrive at

εk+1(x) = εk(x) −
∫
Ω
Γ(x− x′)L(x′)εk(x′)dx′ (14)

= εk(x) −
∫
Ω
Γ(x− x′)σ(x′)dx′. (15)

The numerical procedure for solving this equation is based on the fact that the term∫
Ω Γ(x−x′)σ(x′)dx′ can be efficiently evaluated using Fourier transform techniques. To

that end, the material is divided into the lattice of N1 ×N2 ×N3 points and appropriate
stiffness tensors are assigned to each point. The corresponding stress and strain fields
are then obtained by the following process:

0. Initialize: k = 0, ε0 = E, σ0 = L(x)E.



1. Compute σ̂k by FFT

2. Convergence test: ‖ξ · σ̂k(ξ)‖ ≤ tol

3. Set

ε̂k+1(ξ) = ε̂k − Γ̂(ξ)σ̂k(ξ) for ξ 6= 0

ε̂k+1(ξ) = E for ξ = 0

4. Compute εk+1 by inverse FFT

5. Set σk+1(x) = L(x)εk+1(x)

6. k = k + 1, go to 1.

Details regarding this method together with suggestions for the choice of reference
material can be found in [5] and references therein.

4 Convergence of FFT

The iterative process mentioned above can be expresed in a another way using op-
erator Γ(L(x) − L0).The expresion (11) is a linear integral equation for ε(x). So the
solution of the iterative process can be obtained as

ε(x) =
∞∑
i=0

(L(x) − L0)
iE, (16)

where (L(x)− L0)
i represents i consecutive applications of the operator (L(x)− L0) to

E. This so-called Neumann’s expansion, is a expresion of the inverse of a linear operator
of the form I − A as

(I − A)−1 = I + A = A2 = A3 + . . . . (17)

This expansion converges only if ‖A‖ < 1.The convergence of this series for isotropic
medium was discused in many papers [12, 5]. For example, if the system consists of
several isotropic materials with Lame’s coeficients λ and ν, the best choice of the reference
medium is an isotropic material with λ = (sup λ(x) − inf λ(x))/2 and ν = (sup ν(x) −
inf ν(x))/2. Some other more powerful iterative procedures based on this one were
developed. See for example [12].

The problem occurs for anisotropic materials. This problem is not sufficiently ex-
plored. Numerical results show, that the choice of the reference medium is a very sensi-
tive process. If the unit cell consists of only isotropic and transversaly isotropic material,
the transversaly isotropic material with m = sup m(x), k = sup k(x), l = sup m(x),
l = sup m(x) and n = sup n(x) can be used as the reference medium. The stiffness
tensor of transversaly isotropic material is expressed as

L(x) =



n l l 0 0 0
l k + m k − m 0 0 0
l k − m k + m 0 0 0
0 0 0 m 0 0
0 0 0 0 p 0
0 0 0 0 0 p


. (18)



However, when the isotropic material is selected as the reference medium, the con-
vergence of iteration process may fail or slow considerably as it depends on the contrast
of material parameters of isotropic and transversaly isotropic materials.

The poorest results are gained if the transversaly isotropic stiffness tensors are rotated
around any axis as L(x) = Q>(x)L′(x)Q(x), where Q(x) is the matrix of rotation. The
convergence in this case is not reached for any ”reasonable” choice of the reference
material. Theoretically, the conditions for convergence in this case could be gained with
the help of interval matrixes, but we were not able to obtain any reasonable results. For
details you can see [10, 11].

5 Results obtained by FFT algorithm

In this section results for a 2D example are shown. A unit cell with a hexagonal
arrangement of carbone fibers embedded in an epoxy matrix is used. See Fig. 8. This

Figure 8: Hexagonal array

unit cell is divided into 127 × 73 pixels and every pixel is assigned material properties
(e.g. a stifness tensor) according to his position. Two isotropic materials, one for carbone
fibers and one for the epoxy matrix are used. Three different FFT algorithms are used.
3D algorithm works with the 6× 1 strain and stress vectors (e.g. ε11, ε22, ε33, ε12, ε13, ε23),
2Dgen algorithm uses only inplane components of these fields and a component normal
to this plane (e.g.ε11, ε22, ε12, ε33) and 2D algorithm, which uses only inplane components
(e.g. ε11, ε22, ε12). Relation between the speed of convergence and the choice of the
reference medium is shown in Fig. 9, where the material properties of the reference
medium are defined with the help of k as:

µ = µepox + k(µcarb − µepox) (19)

λ = λepox + k(λcarb − λepox), (20)

where λ and µ mean Lame’s koeficients. The choice of reference medium does not
influence the overall material properties of this unit cell. Fig. 10 shows the speed of
convergence for k = 6. The amount of unbalanced stress is used as a convergence
criterium. The y-axis is in logaritmic scale. Evidently the speed of convergence is very
high, but unfortunetly, if we use several different isotropic materials in the unit cell (not



Figure 9: Convergence

only two as in our example), the speed of convergence decreases, but not drastically.
Neverthless, a linear dependence of the convergence speed on the number of isotropic
materials is observed.

Figure 10: Speed of convergence

6 Conclusion

The paper outlines modeling tools applicable to the formulation of meso-scale periodic
unit cells. Such unit cells are intended for the evaluation of effective elastic properties
of woven composite tubes made of graphite fibers bonded to a polymer matrix. Stan-
dard FEM based homogenization procedure and the method based on the Fast Fourier
Transform can be implemented to derive the desired results.
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Some of the results published in this paper have been already presented on other
conferences.

References

[1] Beran, M.J. Statistical continuum theories. Intersciens publishers, a division of John
Wiley and Sons, New York, (1968).
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