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Summary : One possibility how to decrease lateral vibration of rotors excited by 
imbalance of the rotating parts is to couple the shaft with the stationary part through 
squeeze film dampers. An important factor that can significantly influence their 
dynamical properties is fluid inertia. For accommodation of damping forces in 
computational models several approaches have been developed : (i) a method based 
on calculation of the viscous forces by solving a Reynolds equation and 
determination of the inertia ones from the Lagrange equation and Reynolds transport 
theorem, (ii) a method based on averaging terms in the Navier-Stokes equation 
related to the direction of prevailing pressure gradient, and (iii) a method based on 
solving a set of Navier-Stokes equations. These methods have been implemented into 
the procedure for determination of the steady-state response of a rotor excited by 
imbalance of the rotating parts imploying a trigonometric collocation method. The 
particular approaches to calculation of the damping forces differ in the extent of 
their validity, in the number of arithmetical operations, and as application of the 
trigonometric collocation method results into solving a set of nonlinear algebraic 
equations they have different influence on convergence of the computational process. 

 
 
1. Introduction 
One possibility how to decrease magnitude of lateral vibration of rotors consists in coupling 
the shaft with the stationary part through squeeze film dampers. The dampers are composed 
of two principal parts : of an outer and inner rings between which there is a layer of lubricant. 
The inner ring is coupled with the stationary part by a retainer spring that prevents its turning 
together with the shaft and makes possible its vibration relative to the machine frame. 

 In computational models the squeeze film dampers are usually incorporated by means of 
nonlinear force couplings. To determine components of the damping force it is necessary to 
know a pressure function that describes a pressure distribution on the damper gap. 
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2. Calculation of damping forces using a classical lubrication theory ( R ) 
The classical lubrication theory assumes that 

• the inner and outer rings of the damper are absolutely rigid, 
• surfaces of the inner and outer rings are absolutely smooth, 
• cross section of the damper gap has an annular shape and its dimensions are not changed in 

the axial direction, 
• the lubricant is incompressible Newtonian liquid, 
• inertia properties of the lubricant are negligible, 
• viscosity of the lubricant is constant, 
• the oil adheres perfectly to surfaces of the inner and outer rings, 
• the flow is laminar and isotermic, 
• pressure in the radial direction is constant, 
• velocity gradient in the radial direction is much greater than those in the axial and 

circumferential ones. 

 On these conditions the pressure distribution in the damper gap is described by a Reynolds 
equation 
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 ϑ, Z - circumferential, axial coordinates ( Fig.1 ), 
 e, γ - eccentricity of the rotor journal centre, position 
   angle of the line of centres ( Fig.1 ), 
 h0, h - width of the gap at centric, eccentric position of the 
   journal, 
 R, η - radius of the rotor journal, oil dynamical viscosity, 
 t - time, 
 pR  - pressure ( pressure function ), 
 u1, w1 - circumferential, axial velocity components of the 
   points on the bearing shell surface, 
 u2, w2  - circumferential, axial velocity components of the 
 Fig.1  Scheme of the bearing   points on the rotor journal surface. 

 If geometry and design parametres of the damper make possible to consider it as long 
( length to diameter ratio greater than 0.25, sufficient sealing at the damper faces ), and taking 
into account usually accepted boundary conditions for velocities 

0u1 =  , 0u2 =  , 0v1 =  , 0w1 =   , 0w2 =  (2) 

the Reynolds equation (1) is transformed into a simplier form 
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 To perform its solution two additional conditions must be added 

00 p)(p =ϑ  (4) 

)2(p)(p π+ϑ=ϑ  (5) 
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p0, ϑ0  - pressure magnitude, specified circumferential coordinate. 

 Condition (4) defines magnitude of the pressure at a specified location of the damper gap. 
(5) represents a condition of periodicity. 

 The circumferential velocity component depends on the pressure gradient and the radial 
one is determined from satisfying the equation of continuity 
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u, v, w - circumferential, radial, axial velocity component. 

 The integration constants C1, C2 are calculated from the relationship defining the velocity 
boundary conditions given by (2). 

 If magnitude of the pressure at some location in the damper gap drops under a certain limit 
pcav, a cavitation takes place and the Reynolds equation stops to hold. The experiments carried 
out by Zeidan and Vance [7] at the early 90-ties proved that pressure of the medium in 
cavitated regions remains approximately constant. Then for the pressure distribution around 
the circumference of the damper it can be assumed 

Rd pp =  for cavR pp ≥   , cavd pp =  for cavR pp <  (9) 

Radial and tangential components of the damping force are then given by its integration 
around the damper circumference 

∫
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2

0
dt dsinpRLF   (10) 

 
 
3.  The method based on calculation of the viscous forces by solving a Reynolds equation 
 and inertia ones by using a Lagrange equation and Reynolds transport theorem ( S ) 
Substance of the damping forces (10) consists only in fluid viscosity. In the 80-ties some 
researcher proved that another factor that can significantly influence dynamical properties of 
squeeze film dampers is fluid inertia. On the other hand they reported that it does not greatly 
afflict the velocity field predicted by the classical lubrication theory. 

 In the early 90-ies El-Shafei [5] developed an approach to determination of damping forces 
of long squeeze film dampers taking into account the fluid viscosity and inertia. He assumed 
that the radial and tangential inertia forces consisted of two components 

2ir1irir FFF +=  (11) 

2it1itit FFF +=  (12) 

Fir, Fit  - radial, tangential component of the fluid inertia force. 

Zapoměl, J., Malenovský, E. 3



 The first part arises from the change of the flow in uncavitated area and can be determined 
from the Lagrange equation of the second order 
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WKL  - kinetic energy of the fluid in uncavitated region. 

 The second component has its origin in the flux through the boundary between the 
cavitated and uncavitated regions. Its magnitude is given by the Reynolds transport theorem 
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S - border surface between cavitated and uncavitated areas, 
V - velocity vector with respect to the surface S, 
n - outward normal vector on the surface S, 
wKL  - specific kinetic energy ( kinetic energy per unit volume ). 

If the damper is uncavitated, the force components Fir2, Fit2 are zero. 

 Kinetic energy of the fluid in uncavitated region ( in the case of long bearings it is assumed 
that the fluid flow is significant only in the circumferential direction ) is defined by the 
following relationship 
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 To perform appropriate manipulations El-Shafei applied the velocity profiles obtained 
from solving the Reynolds equation. Consequently he derived relations ( in a closed form ) for 
fluid inertia forces that hold in a special case : (i) extension of the oil film around 
circumference of the damper is π or 2π and (ii) the rotor journal centre exhibits a central 
circular orbit. 

 The radial and tangential components of the damping force are then composed of the 
inertia and viscous parts that result from solving the Reynolds equation 

γ−γ= && eCemF rt
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γ−γ−= && eCemF tt
2
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Fr, Ft  - radial, tangential components of the damping force, 
mr, mt  - inertia coefficients, 
Crt, Ctt  - viscous coefficients. 

 Both the viscous and inertia coefficients depend only on the relative eccentricity [5]. 
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4. The method based on averaging terms in the Navier-Stokes equation related to the 
 circumferential direction ( ANS ) 
Another approach to taking into accout fluid inertia in computational models of squeeze film 
dampers is based on averaging terms in the Navier-Stokes equation related to the 
circumferential direction ( to the direction of prevailing pressure gradient ) across the film 
thickness 
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 To carry out appropriate manipulations the velocity profiles (6) - (8) predicted by the 
classical lubrication theory are applied. 

 The right-hand side of (20) is a complicated function of the circumferential coordinate ϑ 
and that's why the pressure function p cannot be expressed in a closed form. But as it is 2π 
periodic, it can be approximated by a finite number of terms ( NH ) of a Fourier series 

∑
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1j
jj0 )jsin(b)jcos(aap  (21) 

and the Fourier coefficients aj, bj can be calculated by means of a trigonometric collocation 
method. This approach requires to specify NP collocation points ( angles ) 

)1k.(
N
2

P
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=ϑ  for  k = 1, 2, ... NP  (22) 

and then substitution of its first derivative into (20) yields a set of linear algebraic equations  
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fp - right-hand side of (20). 

 To avoid singularity of the coefficient matrix the number of collocation angles must be 
greater than is the number of the unknown Fourier coefficients. But in this case solving the set 
of linear algebraic equations (24) must be performed utilizing a matrix pseudoinversion. 

 The absolute coefficient a0 is determined from satisfying  the boundary condition (4) 
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 Taking into account a cavitation the pressure distribution in the damper gap is described by 
the following relations 

ppd =  for cavpp ≥   , cavd pp =  for cavpp <  (25) 

 Radial and tangential components of the damping force Fr and Ft are then obtained by 
integration of pd around the damper circumference 

∫
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0
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0
dt dsinpRLF  (26) 

 More details on this procedure are provided by [1] and [2]. 

Zapoměl, J., Malenovský, E. 5



5.  The method based on solving a set of Navier-Stokes equations ( NS ) 
This approach assumes that the flow in the damper gap as 3D. Calculation of the pressure 
distribution starts from solving a set of Navier-Stokes equations completed with the equation 
of continuity 

0pgradrotrot
t

=+η+
∂
∂

ρ cc  (27) 

0div =c  (28) 

c  - vector of velocity components, 
p  - pressure ( pressure function ), 

 To carry out the computation the boundary conditions for velocities must be imposed. 
There are several possibilities : 

• zero velocity of the flow at Γ, 
• zero velocity of the flow at P, K, Γ, 
• zero velocity of the flow at Γ, zero pressure at P, K. 

S, Γ  - surfaces of the inner, outer rings, 
P, K  - surfaces perpendicular to the axis of the damper at its faces. 

 It is assumed that the lubricant adheres perfectly to surfaces of the damper rings and faces. 
If the damper can be considered as long, then the first or second type of the boundary 
conditions should be applied. 

 Solution of the set of Navier-Stokes equations is performed by means of a control volumes 
method using curvilinear coordinates. This procedure approximates the pressure distribution 
and the velocity components by a Bézier body which matches the boundary conditions and 
geometry of the damper. A detailed derivation of the resulting relations is given in [3], [4]. 

 The next manipulations arrive at elimination of velocity components of the centre of the 
inner damper ring. The transformation relationships have the form of convolutory integrals 

∫ τττ−α=
t

0
jiji d)(v)t(c  , ∫ τττ−β=

t

0
ii d)(v)t(p  (29) 

ci  - i-th velocity component, 
αij ,βi  - velocity, pressure functions, 
vj , vi  - i-th, j-th velocity component of the inner damper ring. 

 This approach separates movement of the inner damper ring from the flow of lubricant in 
the damper gap which brings the advantage : coefficients of additional mass and damping 
depend only on the journal position and not on its velocity and therefore their magnitudes can 
be pre-calculated. Radial and tangential damping forces ( Fr, Ft ) are then expressed 
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AM, AB  - square matrices of additional mass, damping coefficients, 
vr, vt, - radial, tangential components of the velocity of the inner damper ring centre, 
ar, at, - radial, tangential components of the acceleration of the inner damper ring centre. 
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6. Response of a rotor supported by squeeze film dampers on imbalance excitation 
The assumed model rotor systems are assigned the following properties 

• the shaft is represented by a beam-like body that is discretized into finite elements, 
• the stationary part is absolutely rigid and motionless, 
• the disks are axisymmetric absolutely rigid bodies, 
• inertia and gyroscopic effects of the rotating parts are taken into account, 
• the rotor is supported by rolling-element bearings and squeeze film dampers, 
• the dampers are accommodated in the computational model by means of force couplings, 
• material damping of the shaft is viscous, other kinds of damping ( except the dampers ) are 

linear, 
• the rotor rotates at constant angular speed, 
• the rotor is loaded by its weight and by centrifugal forces due to its imbalance. 

Lateral vibration of the assumed rotors is governed by the equation of motion and by the 
relationship for boundary conditions 

),()..()...(. HVACSHV xxfffxKKxGKBxM &&&& ++=Ω++Ω+η++  (31) 

)t(BCBC xx =  (32) 

M, G, K - mass, gyroscopic, stiffness matrices of the rotor system, 
B, KC  - ( external ) damping, circulation matrices of the rotor system,  
KSH  - stiffness matrix of the shaft, 
fA, fV, fH - vectors of applied, constraint, hydraulical forces acting on the rotor system, 

xxx &&& ,,  - vectors of generalized displacements, velocities, accelerations of the rotor system, 
xBC - vector of boundary conditions, 
Ω, ηV - angular speed of the rotor rotation, coefficient of viscous damping ( material of 
   the shaft ). 

 The steady-state response of such rotors on excitation caused by imbalance of the rotating 
parts can be determined for a certain class of problems by application of a trigonometric 
collocation method. This approach assumes that 

• the response is a periodic function of time, 
• its period can be derived from the period of excitation, 
• it can be approximated by a finite number of terms of a Fourier series. 

 To be satisfied the boundary conditions (32) at any moment of time the equation of motion 
(31) is transformed into this form 

byAyAyA =++ ... 012 &&&  (33) 

where A2, A1, A0, y, y& , y&& and b are obtained from matrices ∗
2A , ∗

1A , ∗
0A  and vectors x , x& , x&& , 

b* by omitting their rows and columns that correspond to the degrees of freedom to which the 
boundary conditions are assigned 
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 The steady-state solution of (33) is approximated by a finite number of terms of a Fourier 
series 
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y0, ycj, ysj  - vectors of Fourier coefficients ( j = 1, 2, ... , N ). 

 A trigonometric collocation method requires to specify NC collocation points of time. Then 
substitution of the assumed solution and its derivatives into (33) for all collocation points 
results into a set of nonlinear algebraic equations. The unknowns are Fourier coefficients of 
all displacements of the rotor system to which no boundary conditions are assigned. 
 
 
7. Example - response of a rotor on imbalance excitation 
The investigated rotor ( Fig.2 ) consists of a shaft ( SH ) and of two disks ( D1, D2 ) attached 
to its overhanging end. The shaft is coupled with a rigid foundation plate ( FP ) through two 
rolling-element bearings and squeeze film dampers ( SD1, SD2 ). 

 The rotor rotates at constant angular speed and is loaded by its weight ( and by forces of 
constant magnitude acting on the shaft at the disk D1 location in the horizontal direction ). In 
addition the system is excited by centrifugal forces caused by the disks imbalances. 

 The task was to analyze the steady-state component of the induced vibration.  

 In the computational model the shaft was represented by a beam-like body that has been 
discretized into 5 finite elements. Both dampers were considered as long. 

 Dependence of the diagonal elements of the matrix 
of additional mass corresponding to the radial and 
tangential directions on the relative eccentricity of the 
rotor journal in damper SD1 is given in Fig.3. 

 In Fig.4 there are compared forms of orbit of the 
rotor journal centre in damper SD1 determined by 
different approaches to calculation of the damping 
forces. It is evident that all arrive approximately at the 
same results. The procedure based on solution of the 
Navier-Stokes equations shows slightly greater 
damping. 

 Fig.2 Scheme of the rotor system 

 In Fig.5 and 6 there are drawn time histories of the oil pressure during one period obtained 
by the classical lubrication theory ( R ) and by the approach based on averaging inertia terms 
in the Navier-Stokes equation ( ANS ). The results confirm that influence of the fluid inertia 
properties rises with increasing magnitude of the Reynolds number calculated according to 
[5].  

 Comparison of orbits of the rotor journal centre in damper SD1 calculated by means of a 
Reynolds and averaged Navier-Stokes equations is carried out in Fig.7 and 8. Its evident that 
contribution of the fluid inertia to the damping effects depends on magnitude of the Reynold's 
number. 
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 Fig.9 and 10 show trajectory of the rotor journal centre in damper SD1 in dependence on 
the force magnitude acting on the shaft at disk D1 location in the vertical direction. For larger 
eccentricities difference between the results obtained by NS and ANS methods is greater. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.3 Additional mass coefficients Fig.4 Orbit of the rotor journal centre 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.5 Time history of the pressure Fig.6 Time history of the pressure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.7 Orbit of the rotor journal centre Fig.8 Orbit of the rotor journal centre 
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 Fig.9 Orbit of the rotor journal centre Fig.10 Orbit of the rotor journal centre 
 
8. Conclusions 
In computational models the squeeze film dampers are usually incorporated by means of 
nonlinear force couplings. Four approaches to determination of the damping forces have been 
implemented into the procedure for calculation of the steady-state response of a rotor on 
imbalance excitation and have been compared. Results of the computer simulations show that 
contribution of the fluid inertia to dynamical properties of the dampers becomes significant if 
magnitude of the Reynolds' number is large. 
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