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Summary: The paper deals with the method of interpolation of the homogenized
effective material parameters which are computed by solving local microscopic boun-
dary value problems. These coefficients constitute the tangent operator employed to
linearize the problem of finite deformation. Due to finite deformations, the microsco-
pic problems are only locally periodic and the effective coefficients as well. The
proposed interpolation scheme enables to reduce wisely the number of microscopic
problems that have to be solved to recover the macroscopic domain with relevant
effective coefficients.
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1. Introduction

The topic of the paper is related to the problem of computing the finite deformation of
hyperelastic media with locally periodic heterogeneous microstructure, cf. [1, 2, 6]; for
applications see [4, 5]. The macroscopic problem is defined in terms of the homogenized
coefficients constitute the tangent operator employed to linearize the problem of finite
deformation; in our examples we use the updated Lagrangian configuration. Any refe-
rence configuration is associated with the local microstructures which determine values
of the homogenized coefficients; these can be computed by solving the local microscopic
boundary value problems with periodic boundary conditions. Any micro-structural peri-
odicity is lost, when the material is subjected to a nonuniform finite deformation, so that
an infinite number of the microscopic problems would have to be solved to recover the
macroscopic domain.
In order to make the large deformation problem tractable numerically, we suggest

to introduce an approximation scheme, so that we need to compute the homogenized
coefficients right way at a selected points of the macrostructure. The deformation state
of the microstructure is determined uniquely by the macroscopic deformation gradient
F . Therefore the approximation of the homogenized coefficients could be established in
the space of the components Fij, i, j = 1, 2, (3), regardless the spatial position within the
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macroscopic domain. On the other hand, in two distant parts of the macroscopic domain
the deformation can be quite different, so that it makes sense to relate the approximation
also to the spatial position. These observations lead us to the concept of the macro-
elements.

2. Concept of the macro-elements

We consider that the macroscopic domain Ω is decomposed into a finite number of ma-
croscopic subdomains Ωe, so that

Ω̄ =
⋃
e

Ω̄e . (1)

In order to introduce a deformation-based interpolation scheme over each of the macrosco-
pic subdomains, we shall assume that the variation of deformation tensors F (x), x ∈ Ωe

is only moderate. For x′ ∈ Ωe we define

h(x′) ≡ max{‖F (x)− F (x′)‖ |x ∈ Ωe}, (2)

where ‖ · ‖ is the Frobenius norm. Further in each Ωe we define the central point x∗ for
which

h(x∗) ≤ h(x), ∀x ∈ Ωe . (3)

Using the central point and the associated deformation ∗F = F (x∗) we decompose the
deformation in Ωe

F (x) = f (x) ∗F . (4)

This decomposition is employed in the following definition of the macro-elementM:

M(∗F , {f j}m
j=0) = {F | ∃ f ∈ conv{f j}m

j=0 : F = f
∗F} (5)

In (5) conv{f j}m
j=0 means the convex hull of a basis {f j}m

j=0. The dimension m + 1 of
the basis will be specified later on. We recall that the macro-element is related to m+ 1
different microstructures; in the spirit of (4) they are obtained by deforming the “central
microstructure” defined by ∗F . Therefore, it is natural to choose the identity mapping as
f 0.
Let us denote byMe the macro-element, which is defined for the central point x∗ ∈ Ωe,

see (3). Desirably, the macro-element should recover deformation gradients in Ωe, i.e. we
want

∀x ∈ Ωe : F (x) ∈Me . (6)

This property is guaranteed, if we define the basis {f j}m
j=1 in terms of the box in IR

4,
or IR9 for 2D, or 3D problems, respectively. Thus we obtain m = 24, or m = 29 tensors
f j, respectively; the components of f j are obtained combining the minimal and maximal
values ai , ai (the i is the multi-index):

ai = minx{fij(x), ij ≡ i |x ∈ Ωe}, i, j = 1, 2, (3) ,
ai = maxx{fij(x), ij ≡ i |x ∈ Ωe}, i, j = 1, 2, (3) .

(7)

The basis can get smaller, if the polar decomposition is applied. The deformation f
in (4) determines2, how the microstructure at x differs from that at x∗. Obviously, f

2We use the abbreviated notation F (x) ≡ F , x ∈ Ωe, if not specified otherwise.
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Figure 1: Polar decomposition of the macroscopic deformation gradients in Ωe.

comprise also the rotation which, however, does not influence the deformation state of the
microstructure.
Let us consider the deformation [F decomposed, as follows

[F = ∗
[F ∗F

= ∗
[R ∗

[U ∗F .
(8)

Thus, the polar decomposition of f ≡ ∗
[F yields the rotation tensor ∗

[R and the right
stretch tensor ∗

[U , which is symmetric. Due to this nice property we can reduce the
number of the microstructural problems that have to be solved. Now the requirement,
which is equivalent to that of (6), reads as

∀x ∈ Ωe | ∃R,∃F ∈Me : F (x) = RF , (9)

where RT = R−1 is the orthogonal tensor of rotation which follows from (8) for F (x) ≡
[F . The (reduced) basis for the macro-element which preserves (9) can be defined using
the right stretch tensors U = ∗

[U employed in (8). Thus, each f j is defined by 3, or 6
components in 2D, or 3D, respectively, attaining the values bi , bi :

bi = minx{Uij(x), ij ≡ i |x ∈ Ωe}, i, j = 1, 2, (3) ,
bi = maxx{Uij(x), ij ≡ i |x ∈ Ωe}, i, j = 1, 2, (3) .

(10)

In this case the dimension of the basis is m+ 1 = 23 + 1 and m+ 1 = 26 + 1 for 2D and
3D, respectively.

3. Simplexes on the macro-element

The interpolation scheme on simplexes in IRd is described in details in [2]; it is based on
sequential curve interpolation using the Hermit cubic polynomials. For 2D problems the
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corresponding simplex is the tetrahedron with vertexes xk, k = 1, 2, 3, 4. The interpolation
function ψ̃ is defined in terms of ψ(xk) and ∇xψ(xk) computed at each vertex, k =
1, . . . , 4. Then, for a given x◦, any point in the simplex, the interpolated function value
is determined by the mapping

x◦

{ψ(xk), ∇xψ(xk)}k=1,...,4

}
−→ ψ̃(x◦) . (11)

Here we explain, how to employ this scheme to define approximation of the homogenized
coefficients on the macro-elements.
The properties (6), or (9) guarantee, that a deformation F (x) for x ∈ Ωe belongs to

the macro-element Me (up to a rotation in the case of (9)). The vertexes of Me, the
elements of IRd, are formed by the basis elements f j, j = 1, . . . ,m plus f 0, which is the
identity mapping corresponding to the “central microstructure” of Me. In what follows
we treat only the case (9), so that for 2D problems d = 3 and for 3D ones d = 6. We recall,
that for this case f j are defined using the right stretch tensors, so that (fkl)j = (flk)j.
Let ◦F be the deformation, for which we want to obtain an approximation of the

homogenized coefficients. The polar decomposition (8) yields ◦F = ∗
◦R ∗

◦U ∗F . In order
to apply the interpolation scheme described above, we shall have to identify also one of
the simplexes embedded inMe which contain the deformation ∗

◦U ; its components form
the components of the point x◦. Adhering to the notation introduced in the previous
paragraph, for 2D problems we write

x◦ =

 ∗
◦U11
∗
◦U22
∗
◦U12

 , xk =

 (f11)jk

(f22)jk

(f12)jk

 , k = 1, . . . , 4 , (12)

where the components frs are defined by (10). The indices jk ∈ {0, . . . ,m} determine a
selection amongm+1 = 9 elements of the basis ofMe, so that x◦ is a convex combination.
In order to establish the selection and thereby the simplex uniquely, we can use the
following algorithms:

1. The box Me in IR
d constituted using f j (symmetric), j = 1, . . . ,m is subdivided

into a collection of non-overlapping simplexes one vertex of which is defined by f 0,
see Fig. 2. For example, in 2D, thus, we have to “check” up to all 12 simplexes to
find the correct one.

2. We compute the distances ρj = ‖∗◦U−f j‖ and select n = 4 smallest ones ρj1 , . . . , ρjn .
This selection may provide a simplex which does not contain ∗

◦U . Then we have to
resort for the secure algorithm 1.

When approximating the homogenized coefficients, i.e. ψ := Q̂ijkl, for i, j, k, l =
1, 2, (3) we employ the sensitivity of Q̂ijkl w.r.t. the deformation gradient, see [1, 2].
Thus we obtain the gradient of the homogenized coefficients δQ̂ijkl( [F ; ·); the dot is to
be replaced by the relevant “direction”, which is defined below. We consider [F , \F and
apply the decomposition w.r.t. to some F :

[F = [f F , \F = \f F .
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Figure 2: The macro-element in IR3 for 2D problems. f 0 is the central deformation (iden-
tity), f j, j = 1, 2, . . . , 8 correspond to the right stretch tensors obtained using the polar
decomposition. Right: one of the simplexes with vertexes xk, k = 1, . . . , 4, which is em-
bedded in the macro-element. The central point corresponds to the particular deformation
in the macroscopic domain.

The following holds
\f = [

\f [f = (I + [
\g) [f , (13)

where I is the identity, so that we can express

[
\g = ( \f − [f ) [f −1 . (14)

When the deformations [F and \F are closed enough each other, we can write

Q̂ijkl(
\F ) ≈ Q̂ijkl(

[F ) + δQ̂ijkl(
[F ; [

\g), (15)

whereas the straightforward expression Q̂ijkl( [F ) + δQ̂ijkl( [F ; \f − [f ) is not correct.
We remark, that a quite similar method is applied for approximation of the averaged

stress on the macro-element.

4. Numerical examples and conclusions

In this paragraph we illustrate approximation errors in homogenized coefficients evaluated
over a simplex, for hyperelastic material with incompressible inclusions, cf. [2, 4]. The
relative error is evaluated w.r.t. the values obtained by the direct computation. In Tab. 1
we introduce the deformation gradients which constitute vertexes of the simplex.

Table 1: Deformation gradients f i spanning the simplex (F i = f iF 1).
Vertex: i = 1 2 3 4

f i

1.0 0.0
0.0 1.0

1.2 0.0
0.0 1.0

1.0 0.0
0.0 1.2

1.0 0.1
0.1 1.0

F i
1.0192 0.0922
0.1372 1.0039

1.2230 0.1106
0.1372 1.0039

1.0192 0.0922
0.1647 1.2047

1.0329 0.1925
0.2391 1.0131
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Table 2: Relative error in the homogenized coefficients evaluated for different
deformations: F# = f #F 1.

Example # 1 2 3 4 5
f11
f22
f12

1.0889
1.0444
0.0111

1.0300
1.0700
0.0350

1.0500
1.0500
0.0250

1.0400
1.0100
0.0050

1.1
1.1
0

error [%] 0.14 0.82 0.39 0.56 5.93

In our numerical tests, see Tab. 2, we observed that the maximum relative error in the
(averaged) stress is less than that obtained for the homogenized coefficients. For these the
relative error most often does not exceeds 1% (in the Example 5 the error is ≈ 6%).
The approximation scheme reported in the paper was employed in the coupled macro-

micro analysis of large deforming hyperelastic continua with incompressible inclusions,
cf. [2, 3] It has been observed that, approximating the “tangent stiffness” coefficients,
convergence of the macroscopic iterations does not deteriorate, so that effectiveness of
the coupled macro-micro algorithm increases. Thus, the coupled macro-micro analysis
can be enhanced due to the approximation scheme suggested in this work. The approach
suggested in the paper presents an alternative to the direct macro-micro analysis, which
otherwise requires a massive parallel computational power.
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