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Summary: The aim of the paper is to propose an integration of a genetic algorithm
and case-based reasoning in robot motion planning in a partially known dynamic
environment. The goal of the planning is to help find a path from a start to a goal
position without collisions with known obstacles minimizing length and difficulty of
the path. The environment is modelled by a grid in which known static obstacles
or unattainable positions are defined. The robot motion is reduced in horizontal,
vertical and diagonal directions. The paths realized are stored in a base of cases
along with the degree of their traversability. When planning a path, first this base is
searched so as to find the cases that are most similar to the given case and then they
are adapted to it. If similar cases are not found in the base or adapted solutions are
not good enough, a new path is searched for by a genetic algorithm.
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Summary: The aim of the paper is to propose an integration of a genetic 
algorithm and case-based reasoning in robot motion planning in a partially 
known dynamic environment. The goal of the planning is to help find a path from 
a start to a goal position without collisions with known obstacles minimizing 
length and difficulty of the path. The environment is modelled by a grid in which 
known static obstacles or unattainable positions are defined. The robot motion is 
reduced in horizontal, vertical and diagonal directions. The paths realized are 
stored in a base of cases along with the degree of their traversability. When 
planning a path, first this base is searched so as to find the cases that are most 
similar to the given case and then they are adapted to it. If similar cases are not 
found in the base or adapted solutions are not good enough, a new path is 
searched for by a genetic algorithm.  

 
 
1. Introduction 
Motion planning of a mobile robot is often decomposed into path planning and trajectory 
planning. Path planning (global navigation) generates a path from a start to a goal position 
without collisions with known obstacles. Trajectory planning (local navigation) schedules the 
movement of a robot along the planned path. There are many approaches to a robot navigation 
including genetic algorithms (GA). An advantage of GA-based approaches is their ability of 
adaptation to varying environment. (Nearchou 1999) and (Sugihara & Smith 1999) propose 
genetic algorithms for adaptive navigation in an environment represented by a two-
dimensional grid map. In (Homaifar et al. 2001) a genetic algorithm for a continuous 
environment is described. 

When an environment is dynamic and/or partially unknown, then robot navigation is a 
complicated task, because changes in the environment are usually very difficult to model. 
Therefore robots with ability to learn and explore the environment are needed. This ability is 
often achieved by using neural networks, reinforcement learning or evolution algorithms. 
Case-based reasoning (CBR) is another learning technique, which solves a new problem by 
adapting known solutions of similar previously solved problems. It seems that the CBR is a 
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suitable method for a robot control because robotic applications usually include repeated 
tasks.  

A brief overview of CBR and its major open problems is presented in (Mántaras & Plaza 
1996). (Aamodt & Plaza 1994) give an overview of the foundational issues related to CBR, 
and describes some of the leading methodological approaches within this field. The book 
(Lenz et al. 1998) in their book summarize the results of the recent years of research in CBR. 
In (Kruusmaa & Svensson 1998a,b) a map-based and case-based path planning are combined 
for a global navigation of mobile robot in an environment represented by a grid map. 
(Kruusmaa & Willemson 2002) analyse theoretically a possibility of covering the path space 
by a set of cases. Application of CBR to a global navigation in a continuous environment is 
described in (Haigh & Shewchuk 1994) and (Supic & Ribaric 2001). (Louis & Li 1997) 
combine genetic algorithms and case-based reasoning for a local navigation in a continuous 
environment. This problem is also solved in (Ram & Santamaría 1997) and (Chagas & 
Hallam 1998) by means of case-based reasoning and reinforcement learning. (Fox 2000) 
proposes a unified CBR architecture for robot navigation in a continuous environment, which 
enables both global and local navigation. 
 
 
2. Path planning 

Assume that path planning is considered in a rectangular plane between two locations s and g. 
This plane is divided into a grid of cells. For simplicity, we consider square shaped cells. 

Allowed directions of robot motion are only horizontal, vertical and diagonal, see Fig. 1. 
In Fig. 2, the grid representation is shown. Here cells in the left upper and right lower corners 
represent the start and goal positions s, g and black cells correspond to obstacles. In (Sugihara 
& Smith 1999) hazardous obstacles are also considered. These obstacles allow a path to 
intersect them at the expense of a higher cost.  

We consider a rectangular grid [1, m] × [1, n]. A cell c of this grid is determined by a pair 
of coordinates in this grid: c = (x, y), where x ∈ {1, 2, … , m}, y ∈ {1, 2, … , n}. A distance 
(not considering obstacles) between points  and  can be defined in 
using these formulas: 
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The third equation corresponds to the fact that only motions in horizontal, vertical and 
diagonal directions are allowed. 

The robot moves on its path between adjacent cells choosing allowed directions without 
collisions with obstacles. That means the path is defined as a sequence of adjacent cells 
between s and g subject to these constraints and its total length is given by the sum of 
distances between adjacent cells. If there are more feasible solutions (i.e. paths between s and 
g satisfying defined constraints), then we try to determine the paths of a minimal value of a 
cost function considering both the length and the difficulty of a path.  
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Fig. 1.  Valid directions of robot motion 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2.  Grid representation of 2D space with start and goal positions of the robot and static 

obstacles 
 
 
3. Path planning using genetic algorithm 

It is obvious that the problem is of a combinatorial nature and its time complexity 
depends on the granularity grid and distribution of obstacles. Even if we restrict our 
considerations to the case when paths have fixed lengths, the complexity remains exponential. 
For example, if we consider only paths with 2n adjacent cells, where n is the number of rows 
(and columns) in a square grid, then the search space contains 82n sequences of directions 
under consideration. Although many of them represent infeasible paths, the problem cannot 
be solved by enumerating all possible paths. Therefore we must use some approximation 
methods selecting only a part from the huge search space.  In this paper we present the use of 
genetic algorithms. We assume that the general framework of this optimisation technique is 
well known and thus we will concentrate only on problem-specific settings. 

For coding of chromosomes, instead of the traditional binary representation, we use a 
coding where each gene corresponds to direction of robot movement to the next cell. Thus 
each chromosome is coded by a string S = (d1, d2, ... ,dL), where di ∈ {1,2, ... ,8}, i = 1,2, ... ,L. 
As to the length of the chromosome, we choose it by the following formula 

 L = 2 * max {m, n}. (4) 

In Fig. 3 is shown a path from a start to a goal position in the configuration from Fig. 2 and its 
coding. 
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Fig. 3.  A path with coding (5,5,6,8,7,7,6,5,7,8,7,8,5,5,5,5,3,5,5,6) 
 
 
 

Coding of the path from Fig. 3 corresponds to one solution of the problem and it can be 
seen that this solution is not optimal. In real situations, chromosomes need not represent any 
solution, i.e. after the last movement represented by the last gene, the robot did not reach the 
goal position. Another (much more pleasant) case is when the robot reaches the goal position 
before passing all genes. Of course, in this case, the movements of the next genes are not 
taken into consideration.  

When generating the sequence of directions, we must avoid all movements out of the grid 
and the movements that cause collisions of the robot with obstacles, e.g. the path (5,6, …) 
causes a collision with the obstacle in the second row and second column. As infeasible we 
also consider two adjacent movements that are inverse to each other, i. e. 3-7, 4-8, 5-1, 6-2, 7-
3, 8-4, 1-5 and 2-6. 

When executing genetic algorithm we need a tool for evaluating the quality of 
chromosomes. We model it by the distance of the last chromosome’s gene from the goal 
position and a cost of this path. The two criteria are applied in the lexicographic way, i.e. that 
chromosome is better, whose distance from the goal position is shorter or, when distances are 
equal, whose cost is lower.  

The described algorithm was implemented in (Sedláček 2000), where the Euclidean 
distance was used. Parameter settings are: 

• Initial population generated randomly. 
• Population size = 50. 
• Binary tournament selection (each parent is determined by the most fit chromosome 

between randomly chosen two chromosomes from the population). 
• Uniform crossover (each gene in the child solution is created by copying the 

corresponding gene from one or the other parent, chosen according to a binary random 
number generator. If the random number is 0, the gene is copied from the first parent; 
if it is a 1, the gene is copied from the second parent). 

• Mutation of a gene selected at random. 
• Incremental replacement (eliminating the chromosome with the worst fitness function) 
• Termination criterion: maximal number of generations = 50000. 
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4. Case-based reasoning and path planning 
Case-based reasoning (CBR) is based on the retrieval and adaptation of the old solutions to 
the new problems. A general CBR cycle may be described by the following four steps 
(Aamodt & Plaza 1994): (i) Retrieve the most similar case or cases; (ii) Reuse the information 
and knowledge in that case to solve the problem; (iii) Revise the proposed solution; 
(iv) Retain the parts of this experience likely to be useful for future problem solving. Besides 
specific knowledge represented by cases, general domain knowledge usually plays a part in 
this cycle by supporting the CBR processes. 

In (Kruusmaa & Svensson 1998a,b) cases represent paths that the robot has traversed. A 
path )  from the start cell  to the goal cell  is specified as an ordered set of 
adjacent grid cells  

,( gs ccP sc gc

 . (5) },...,,...,{),( gisgs cccccP =

Each path in the casebase is stored with a value of a cost function F(P), which characterises 
the traversability of the path: 
  (6) ),()( rlfPF =

The parameter l is the length of the path. The parameter r characterises the risk (or difficulty) 
of following the path and is calculated by gathering information during the path following 
process.  

If, for a given start cell c  and a given goal cell c , the casebase does not contain a path 

leading from  to , a similar path is retrieved according to the formula  
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If the cells  and  are found, then a genetic algorithm is used to find paths from  to  

and from c  to  (this represents the adaptation step of CBR). If there are no similar cases, 
or if the proposed path is not good enough, the GA-based path planner has to be used to plan 
the whole new path. In (Kruusmaa & Svensson 1998a,b) a probabilistic searching map-based 
method is used instead a genetic algorithm. 

sc′
0
g
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sc sc′
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After traversing the path determined in the way described above, the experience obtained 
is retained if necessary. It means, that this path will be stored in the casebase, only if the 
casebase does not contain any similar path with a lower or equal cost (similar path with higher 
cost will be replaced by the new one). A similarity measure for this phase is different ftrom 
the one used in the retrieving phase and is based on the distance between the paths  and  
defined in this way: 

1P 2P
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where  denotes the distance between the points  and . Kruusmaa & Svensson 
(1998a,b) use the Euclidean distance and in (Kruusmaa & Willemson 2002) for a special 
problem the R -distance is used: 
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Šeda, M., Dvořák, J. 5



The maxmin construction of  is generally known as directed Hausdorff distance. It 
is not the case that for any inner metrics d the directed Hausdorff distance is a real distance 
since it mostly fails to be symmetric; such a problem occurs, for instance, if d is the Euclidean 
distance. Several approaches can be taken in order to fix the problem, the most commonly 
used one replaces the directed distance by . 

),( 21 PPD

)},(),,(max{ 1221 PPDPPD
In order to keep the size of the casebase constrained it is necessary to forget the most 

useless cases. (Kruusmaa & Svensson 1998b) analyse the following forgetting strategies 
based on values of cost function:  
1. Forgetting the worst cases (i.e., cases with the highest cost). The learning is thus 

success-driven.  
2. Forgetting the average cases. The cases with the average cost are forgotten as non- 

characteristic to the problem at hand.  
3. Forgetting the best cases. The learning is failure-driven (the robot will concentrate on not 

repeating its failures). 
It is also possible to consider the frequency of using cases or the date of the last use and to 
forget cases seldom used or long unused. 

The concept of representing paths and case-based reasoning can be improved in the 
following way. The representation of a path as a sequence of adjacent cells can be too long 
and therefore complicated to handle. We propose to specify a path  from the start 
cell  to the goal cell  as a sequence of cells , where the 
inner cells  of this sequence are those cells, where the direction of motion is changed or 
where this path intersects with another path. Therefore the path can be regarded as a sequence 
of line segments  and these segments are stored as cases in a graph structure, which is 
called a case graph (Haigh & Shewchuk 1994). If not only complete paths but also their parts 
can be reused, then the transfer rate of past experience can be considerably increased. 
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Let a start cell c  and a goal cell  be given. The retrieval of similar paths can be based 
on the intersections of case segments with the neighbourhoods of these cells. We define a 
neighbourhood )  of a cell  as follows: 
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where  is the R -distance (9). As similar paths we regard such paths, which connect 

points from the intersections of case segments and the neighbourhoods  and 

. If some similar path is found, a GA method is used to find paths from  and  
to the corresponding case segments. For the retaining phase, we can define a similarity of case 
segments in this simple way: the segments  and (  are similar, if it holds  
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where d is some of the distances (1), (2), (3), (9).  

  
 

6 Engineering Mechanics, Svratka 2003, #196



5. Conclusions and future work 
The paper dealt with the optimisation of the trajectory of robot moving in 2D plane. The area 
was represented by two-dimensional grid of cells and the motion was restricted to horizontal, 
vertical and diagonal direction. Some cells of the grid were occupied by obstacles and thus 
unattainable. With respect to the combinatorial nature of the problem studied having 
exponential dependence on the search space size, a solution based on a stochastic heuristic 
approach using genetic algorithms is proposed. We also suggest improving this path planning 
method by means of case-based reasoning, where segments of successfully traversed paths are 
reused. At present, only the genetic path planner is implemented. 

In future research, the proposed case-based approach will be integrated with the GA-
based path planning method. We are also going to study other representations of 
chromosomes and the corresponding genetic operators. It is also possible to combine GA and 
CBR in such a way that similar paths retrieved, that are not good enough for a direct use, will 
be injected into initial population in the genetic algorithm. It could increase the efficiency of 
path searching. 
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