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Summary: Our recent experiments on filament-wound composite tube showed 
that unidirectional and cross filament-wound composite tubes had nonlinear 
behavior even under axial loading. This nonlinear behavior, in our opinion, is 
mainly caused by nonlinear shear behavior. In this paper, the nonlinear 
constitutive relation developed by Hahn and Tsai is adopted in our analysis where 
a piecewise linear approximation is used for unidirectional filament wound tubes. 
The nonlinear numerical and experimental results of unidirectional filament 
wound tubes have a good agreement. Also in these paper, some experimental 
results and analysis about cross filament wound tubes are given. 

 
 
1. Introduction 
Filament-wound composite tubes are being increasingly used and are becoming an important 
class of engineering materials for a wide range of applications owing to their high strength-to-
weight ratio and tailored design. Filament winding, one of the most common techniques for 
the manufacture of tubes, often produces interweaving of fibers inside the layer when cross 
filament winding is needed. Generally speaking, filament winding can be divided into two 
types, one is unidirectional filament winding (or called laminated filament winding) in which 
fiber tows are deposited on a mandrel side by side, such as axial winding, off-axis winding 
and hoop winding; the other is cross filament winding in which fiber tows are interlaced when 
they cross. Our recent experiments on the axial stiffness of filament-wound carbon-fiber-
reinforced epoxy tubes showed that filament wound composite tubes had nonlinear behavior 
even under axial loading. The nonlinear behavior of unidirectional composite laminea has 
been studied by Hahn and Tsai[1]. Basing on the theory developed by Hahn and Tsai, 
Hahn[2] studied nonlinear behavior of laminated composite. Ishikawa and Chou[3] studied 
cross-plied woven fabric composites. In their paper they introduced Hahn and Tsai's nonlinear 
shear theory in their analysis and also developed fiber undulation and bridging models to 
explain the nonlinear behavior of woven fabric composites. However, no analysis is about 
filament wound composites.  

In this paper, first, the nonlinear constitutive relation developed by Hahn and Tsai is 
introduced, then a piecewise linear approximation is used for unidirectional filament wound 
tubes. 
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2. Nonlinear theory 
One of the poorly understood characteristics of unidirectional fibrous composites is the 
appearance of severe nonlinearity in longitudinal shear stress-strain relation while in 
longitudinal tension or compression strain remains linearly related to stress. Deviation from 
linearity is also observed in transverse loadings; however, the degree of nonlinearity is not 
comparable to that in the longitudinal shear. Thus the problem may be effectively described 
within the framework of the nonlinear theory of elasticity.  

Hahn and Tsai[1] developed the nonlinear constitutive relation which is adopted here. 
When a strain energy function per unit volume, W(εij), exists, the stress-strain relations are 
derived from 
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where σij is the stress tensor and εij the strain tensor. By introducing the complementary 
energy density W*, strain can be determined in terms of stress. 
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For a state of plane-stress, a polynomial expansion for W* of up to fourth-order will be 
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Experiments in [1] show that the coupling between σ1 or σ2 and σ6 is negligible, i.e., 
coefficients like S166 in W* are negligible. Experiments in [1] also show the absence of 
nonlinear coupling between σ1 and σ2. Therefore, Equation (3) can be reduced to 
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Thus the stress-strain relation deduced from Equations (2) and (4) is given by 
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where γ12 and τ12 are used instead of ε6 and σ6. This equation explicitly shows that according 
to the fourth-order theory only one fourth-order constant S6666 is needed to account for the 
nonlinear shear behavior of the composite lamina. 

 
 

3. Analysis 
Basing on the Equation (6), we analyze the nonlinear behavior of filament wound tubes. We 
use a small increment of tensile stress for our analysis, in which a piecewise linear 
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approximation is used. This kind of incremental analysis is applicable only to quasi-linear 
materials, which have no coupling among various stress components in the nonlinear range so 
that superposition of stresses is permissible. 
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Figure 1. An element from a tube 

 
A thin element laminate consisting of N laminae of unidirectional fiber composites (Figure 

1) is considered. The coordinates (x,  y,  z) are fixed in the laminate with x direction 
concordant with the tube axial direction, while the coordinates (1, 2, 3) are taken parallel to 
the material principal axes of each individual lamina  with the 1 axis parallel to the fiber 
direction in each lamina. 

The following assumptions, similar to the classic laminate theory, have been made for the 
present analysis:  
(1) The interlamina bonding is perfect. 
(2) A plane stress state exists. Thus, the stress components vanish in the thickness (z) 

direction, i.e. σz=τzx=τyz=0. 
(3)  All the laminae and, hence, the laminate experience the same strain in the x-y plane. 
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Figure 2. A lamina 

The linear stress-strain relations of the unidirectional lamina are valid for infinitesimal 
deformations. The initial elastic modules of unidirectional fiber composite can be calculated 
using the elastic modules of the constituents (matrix and fibers) and fiber volume fraction. In 
the following, the stress-strain relations for the k-th lamina are denoted by [Sij]k in the (1, 2, 3) 
coordinate system.  

Sun, J., Růžička, M., Uher, O. 3


































=

















12

2

1

66

2212

1211

12

2

1

00
0
0

τ
σ
σ

γ
ε
ε

k
S

SS
SS

 (7) 

where 
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Note: at the first step loading, S66 will have the form in Equation (8), after that when 
shearing stress is obtained, S66 will be nonlinear function of shearing stress. 

Inverting Equation (7), we obtain 
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where the stiffness is the inverse of the compliance, i.e. Qij=Sij
-1. 

In order to analyze the finite deformation of the lamina, the linear elastic relation is 
assumed between the small increments of stress and strain. So, Equation (9) is rewritten as: 
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The linear elastic relation between the small stress and strain increments of the k-th lamina 
can be transformed to the x, y, z coordinates (Figure 2). 
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where ijQ  is off-axis stiffness.  By integrating the stress through the whole thickness of the 
laminate, we obtain 
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, (12) 

or in the condensed form 
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where the A matrix represents the in-plane stiffness, the B matrix defines the bending-
stretching coupling and the D matrix represents the bending stiffness in the classical laminate 
theory.  

By inverting Equation (13), we obtain 
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where A′, B′, C′ and D′ are from the classical laminate theory. If the tube is bending free, 
which means ∆k=0, it holds 

,''0 MDNCk ∆+∆==∆  (15) 
and then 

.')'( 1 NCDM ∆−=∆ −  (16) 
Therefore, we have 

NK ∆=∆ ][ε , (17) 
where 

'  )'(''][ 1CDBAK −−= (18) 
is the compliance matrix of the laminate. 

Based on the Equations (6)--(18), the incremental analysis can proceed. Only S66 deserves 
special attention, which will be changed at each step of loading to account for the effect of 
shearing stress. 

Considering the laminate under uniaxial tension in the x direction (see Figure 1) by an 
increment ∆Nx≠0 (∆Ny=∆Nxy=0) at l-th step loading, the corresponding increments of strain of 
the laminate are 
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Using Equation (11), (∆σx) k
 (l), (∆σy) k

 (l), and (∆τxy) k 
(l) of k-th lamina can be obtained. 

Transforming them to the material principal coordinates (1, 2, 3), we obtain 
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where [T]k
(l) is the transform matrix of stress. Then the stresses of k-th lamina at l-th step are 
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The average axial stress and strain of tube are 

)()1()(

)()1()(

)()()(

/)()(
l

x
l

x
l

x

l
x

l
x

l
x tN

εεε

σσ

∆+=

∆+=
−

−

. (22) 

And 

( ) .1)( )(2
126666

12
66

l
k

l
k S

G
S τ+=  (23) 

This S66 is then taken back to the Equation (7), it will make some modification to the [Sij]k, 
therefore, to [Qij]k and kijQ ][ . All these modified compliance and stiffness are then prepared 
for next step increment loading. 
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4. Comparison of Numerical Results and Experimental Results 
Using method mentioned in previous section, we calculated several filament wound tubes. 
Their winding angles are 26°, 31°, 36°and 46°. The details of these tubes are listed in Tables 1 
and 2.  
 

Table 1. Detail of tubes 

Mark 
Winding 

Angle 
[deg] 

Mandrel 
Diameter 

[mm] 

Wall 
Thickness 

[mm] 
Fiber Matrix 

Fiber 
volume 

Fraction[%] 
X26 25.8 26 1.11 T700 P418 55 
X31 31.2 26 1.17 T700 P418 55 
X36 36.0 26 1.23 T700 P418 55 
X46 45.8 26 1.42 T700 P418 55 

 
Table 2. Properties of fiber and matrix 

 El 
[Gpa] 

Et 
[Gpa] 

Glt 
[Gpa] 

vlt 

T700 235 15 5 0.35 
P418 5 5 1.6 0.4 

Before doing numerical calculation, we need S6666. Considering the main stress in 46° winding 
angle is shearing stress, we use data from that tube to obtain S6666. S6666 we obtained is 40Gpa-3, 
then this S6666 is also used for the calculation of the other tubes' calculation. Numerical results 
and experimental results of tube stress and strain are given in Figures 3, 4,5 and 6. In each 
figure, curve 1 represents the experimental results of unidirectional filament wound tubes, 
curve 2 represents the numerical results and curve 3 represents the experimental results of 
cross filament wound tubes, respectively. 
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Figure 3. X26 results 
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Figure 4. X31 results 
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Figure 5. X36 results 
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Figure 6. X46 results 

5.Conclusions 
From Figure 3 to 6, we can see 
(1) All numerical results except 36° have a good correlation with experimental results of 

unidirectional filament wound tubes. 
(2) The stiffness of unidirectional filament wound tubes is little greater than that of cross 

filament wound tubes in elastic range (the linear part). The reason for that is the in-plane 
stiffness reduction due to the fiber interlace which causes fiber direction change in lamina 
thickness direction. Also, this fiber interlace causes nonlinear shear behavior in lamina 
thickness direction, which makes nonlinear behavior of cross filament wound tubes more 
complicated, or in other words, the nonlinear behavior of cross filament wound tubes is 
more serious than that of unidirectional filament wound tubes. 

(3)  Nonlinear behavior of filament wound tubes is mainly caused by nonlinear shear behavior 
of composite. 
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