

SIMPLIFIED MODEL OF SUBSOIL-STRUCTURE INTERACTION

P. Fajman¹

Summary: During the past three decades a great deal of research work has been carried out on numerical modelling of soil-structure interaction. This paper starts from a review of governing equations describing creep in the upper-structure, consolidation taking place in the subsoil, and characterizing interactions between the two subdomains (Sec. 2). This general model is then simplified by admitting a two-parameter model of a foundation layer in which the liquid prevailingly flows in the vertical direction (cf. Sec.2.2). Simple examples illustrate the applicability and effectiveness of the model (Sec. 3).

1. Úvod

Problému interakce konstrukce s podložím bylo věnováno nepřeberné množství prací. Vliv dotvarování vrchní stavby a konsolidace podloží na interakci obou subsystémů byl popsán např. v Bittnar, Z. & Šejnoha, J.(1996) a dále zobecněn v Krejčí a kol. (2001).

Časově závislé chování vrchní stavby je vyjádřeno přírůstkovým konstitutivním vztahem, který je založen na aproximaci funkce poddajnosti *J* pomocí Dirichletovy-Pronyho řady. O podloží se obvykle předpokládá, že v částečně nasycené zóně nevzniká odpor pro proudění plynné fáze. Soustava diskretizovaných rovnic pro "nasycené – nenasycené" proudění se výrazně zjednoduší v případě isotermální konsolidace, což je jednofázové proudění v plně nasyceném a deformujícím se mediu.

V odst. 2 jsou nejprve zrekapitulovány základní rovnice pro časově závislou interakci v 3D formulaci. Takové řešení je však po numerické stránce velmi náročné, a proto v odst. 2.2 je navržen jednodušší model, který podloží uvažuje jako vrstvu, v níž převažuje proudění ve směru její tloušťky. Jedná se o časově závislou formulaci pro dvouparametrický model, v němž materiálové vlastnosti porézního skeletu jsou vystiženy konstantami C_1 (Nm⁻³) a C_2 (Nm⁻¹). V odst. 3 bude toto zjednodušené řešení ilustrováno názorným příkladem.

2. Základní vztahy pro časově závislou interakci konstrukce s podložím

Diskretizované rovnice, které popisují přetvárné procesy v konstrukci a podloží, se svou strukturou obvykle liší. V důsledku toho mohou být pole posunutí vrchní stavby u^1 a podloží u^2 nespojitá na kontaktu Γ^{12} mezi podoblastmi Ω^1 a Ω^2 (obr. 1). Tuto nesnáz lze účelně obejít aplikací modifikovaného principu virtuálních prací, v němž zahrneme požadavek spojitosti posunů v kontaktní rovině

$$\boldsymbol{g}(\boldsymbol{u}) = \boldsymbol{u}^1 - \boldsymbol{u}^2 = \boldsymbol{\theta} \tag{1}$$

¹⁾ Doc. Ing. Petr Fajman, CSc. – Stavební fakulta ČVUT, Thákurova 7, 166 29 Praha 6, e-mail: fajman@fsv.cvut.cz

pomocí Lagrangeových multiplikátorů λ . Jejich praktický význam spočívá v tom, že představují kontaktní síly působící v rovině Γ^{12} .

Obr. 1 Soustava složená ze dvou částí: konstrukce Ω^1 a podloží Ω^2 s hranicí Γ^{12}

$$\begin{bmatrix} \mathbf{K}_{1} + k\mathbf{\Gamma}_{11}, & k\mathbf{\Gamma}_{12} \\ k(\mathbf{\Gamma}_{12})^{\mathrm{T}}, & \mathbf{K}_{2} + k\mathbf{\Gamma}_{22} \end{bmatrix} \begin{bmatrix} \frac{\partial \mathbf{u}_{1}}{\partial t} \\ \frac{\partial \mathbf{r}}{\partial t} \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathbf{f}_{1}}{\partial t} \\ \frac{\partial \mathbf{f}_{2}}{\partial t} \end{bmatrix}$$
(2)

Popsaný postup klade velké nároky na řešení soustavy rovnic. U velkých konstrukcí, nám k mnoha stupňům volnosti v horní stavbě přibývá mnoho stupňů volnosti v podloží. Vzhledem k tomu, že se matice tuhosti mění v každém časovém kroku, je nutné soustavu opakovaně řešit. Z tohoto důvodu je žádoucí nějakým způsobem soustavu zredukovat.

S ohledem na to, že informace o vrchní stavbě jsou spolehlivější než o zemině je možné rozložení tuhosti podloží transformovat na základě PVP do náhradních tuhostí přiřazených k vrchní stavbě viz odstavec 2.2. V diskretizované podobě nám pak zbyde pouze neznámý vektor posunutí u^1 (Fajman 2002).

Obr. 2 Zjednodušený model podloží

2.1 Diskretizované podmínky rovnováhy pro vrchní stavbu

Začneme s přírůstkovými konstitutivními vztahy pro dotvarující 3D konstrukci, které byly odvozeny podrobně v Krejčí a kol. (2001). Tam je ukázáno, že přírůstek napětí $\Delta \sigma$ dosažený v rámci časového intervalu $\langle t_{i-1}, t_i \rangle$ souvisí s přírůstkem deformace $\Delta \varepsilon$ konstitutivní rovnicí

_ Fajman, P. _

$$\Delta \boldsymbol{\sigma} = \hat{E} \hat{\boldsymbol{D}} \left(\Delta \boldsymbol{\varepsilon} - \Delta \hat{\boldsymbol{\varepsilon}} - \Delta \boldsymbol{\varepsilon}_0 \right). \tag{3}$$

Zde je $\hat{D} = \hat{C}^{-1}$ konstantní matice typu (6,6), která je svázána s maticí elastické tuhosti materiálu v čase τ vztahem

$$\hat{\boldsymbol{D}} = \boldsymbol{D}_{e}(\tau) / E(\tau) . \tag{4}$$

Ve vztahu

$$\hat{E} = \left[\sum_{\mu=1}^{M} \frac{1}{\overline{D}_{\mu}} \left(1 - \frac{1 - e^{-\Delta y_{\mu}}}{\Delta y_{\mu}}\right)\right]^{-1}$$
(5)

jsou \overline{D}_{μ} tuhosti článků zobecněného Kelvinova modelu vyčíslené uprostřed intervalu $\langle t_{i-1}, t_i \rangle$. Konečně $y_{\mu} = (t / \Theta_{\mu})^q$ jsou pomocné proměnné, v nichž Θ_{μ} jsou retardační časy a $q \leq 1$ jsou zvolené konstanty.

Vliv dotvarování je v závorce vztahu (3) vyjádřen členem

$$\Delta \hat{\varepsilon} = \sum_{\mu=1}^{M} \gamma_{\mu} (t_{i-1}) (1 - e^{-\Delta y_{\mu}})$$
(6)

a poslední člen $\Delta \boldsymbol{\varepsilon}_0$ vyjadřuje přírůstek deformací způsobených nesilovými účinky např. smršťování. Vektory vnitřních proměnných $\boldsymbol{\gamma}_{\mu}, \mu = 1, 2, ... M$, jsou s přírůstky napětí svázány soustavou evolučních rovnic

$$\gamma_{\mu}(t_{i}) = \gamma_{\mu}(t_{i-1}) e^{-\Delta y_{\mu}} + \frac{\hat{\mathbf{C}}}{\overline{D}_{\mu}} \frac{\Delta \boldsymbol{\sigma}}{\Delta y_{\mu}} (1 - e^{-\Delta y_{\mu}}), \qquad \mu = 1, 2...M.$$
(7)

K vytvoření diskretizovaných podmínek rovnováhy aproximujeme posuny u^i po prvcích pomocí bázových funkcí

$$\mathbf{u}^{i} = \mathbf{N}_{u}^{i} \mathbf{d}_{i}, \qquad i = 1, 2....$$
(8)

Uplatněním přírůstkové rovnice (3) a aproximací (8) v principu virtuálních posunů obdržíme diskretizované podmínky rovnováhy vrchní stavby ve tvaru

$$\hat{\mathbf{K}}\Delta \mathbf{d}_{u}^{1} = \Delta \bar{\mathbf{f}}^{1}, \tag{9}$$

kde \hat{K} je matice aktuální (tečnové) tuhosti vrchní stavby, $\Delta \bar{f}^{1}$ je přírůstek vnějších uzlových sil zahrnujících i účinek přírůstků počátečních napětí příslušných podle (2) k přírůstkům deformací ($\Delta \hat{\varepsilon} + \Delta \varepsilon_{0}$)

2.2 Popis chování podloží

Procesy zahrnující transport vlhkosti v deformovatelném a diskretizovaném porézním podloží jsou popsány maticovým vyjádřením rovnice kontinuity a podmínek rovnováhy. Oba typy rovnic jsou podrobně diskutovány v Bittnar, Z. & Šejnoha, J.(1996). Tam je ukázáno, že tvoří soustavu diferenciálních rovnic prvního řádu v čase, kterou lze integrovat numericky. Zahrneme-li i v tomto případě do podmínek rovnováhy požadavek spojitosti posunů na hranici Γ^{12} , obdržíme nakonec soustavu algebraických rovnic pro neznámé vektory přírůstků

uzlových posunů Δd_u^2 a pórových tlaků Δd_p . Podrobná diskuse tohoto řešení přesahuje prostorové možnosti příspěvku.

Zjednodušený model pro popis přetváření podloží

Obi. 5 Preupokiady resem a izochrony napeti

Předpokládejme, že podloží je tvořeno vrstvou tloušťky h (obr. 3) a že transport vody vytlačované z plně nasyceného podloží pod tíhou vrchní stavby probíhá převážně ve směru tloušťky vrstvy – drénovaná základová spára. V takovém případě se jedná o Terzaghiho úlohu

$$\frac{\partial p}{\partial t} = c_{\nu} \frac{\partial^2 p}{\partial z^2},\tag{10}$$

kde

$$c_{v} = \frac{k}{\gamma_{w}m_{v}} = \frac{k \cdot E_{\text{oed}}}{\gamma_{w}}$$
(11)

je součinitel konsolidace a $k \pmod{(\text{m.s}^{-1})}$ je součinitel filtrace, který pro málo propustné zeminy nabývá hodnot v rozmezí 10^{-5} až 10^{-8} m.s⁻¹ = 1 až 10^{-3} m.den⁻¹ (Vaníček 1996), γ_{ν} je měrná tíha vody. Konečně

$$E_{\rm oed} = G \frac{2(1-\nu)}{1-2\nu}$$

je edometrický modul přetvárnosti.

Řešení je hledáno ve tvaru

$$\varepsilon(t) = \frac{w(t)}{h} = \frac{1}{E_{\text{oed}}} \left[U(t - t_0) f(t_0) + \int_{t_0}^t U(t - \tau) df(\tau) \right],$$
(12)

kde f je zatížení povrchu. Funkce $U(t, \tau)$ může být formálně vyjádřena pomocí Dirichletovy-Pronyho řady, jak ji známe z teorie dotvarování betonových konstrukcí, tj.

$$J(t,\tau) = \frac{1}{E_{\text{oed}}} U(t,\tau) = \sum_{\mu=1}^{M} \frac{1}{D_{\mu}} \left\{ 1 - \exp[y_{\mu}(\tau) - y_{\mu}(t)] \right\},$$
(13)

kde v tomto speciálním případě

Fajman, P.

$$D_{\mu} = E_{\text{oed}} \frac{\pi^2 \mu^2}{8}, \quad y_{\mu} = \left(\frac{\pi\mu}{2h}\right)^2 c_{\nu} \cdot t, \quad \mu = 1, 3, 5...$$
(14)

Popsané řešení dobře vystihuje skutečnost při založení konstrukce na základové desce. Při založení na pásech se uplatní dva jevy. Jedná se o vliv smykové tuhosti zeminy mimo základový pás, která se projevuje vznikem smykové kotliny (obr. 4), a o možnost zvýšené konsolidace v důsledku proudění vody do stran mimo základ. Tento efekt lze postihnout 2D analýzou příčného řezu na obr. 4 s využitím druhé a třetí rovnice soustavy (10). Do zjednodušeného modelu (viz (14)) pak zavedeme modifikovanou hodnotu součinitele konsolidace c_v . S výhodou lze využít i výsledků měření sedání.

Při uvážení dvou složek deformace ε_z , γ_{yz} a příslušných napětí σ_z , τ_{yz} obdržíme formálně stejný přírůstkový konstitutivní vztah jako (3), v němž

$$\hat{\mathbf{D}} = \begin{bmatrix} 1 & 0 \\ 0 & G/E_{\text{oed}} \end{bmatrix}, \quad \Delta \boldsymbol{\varepsilon} = \begin{cases} \Delta \boldsymbol{\varepsilon}_z \\ \boldsymbol{\gamma}_{yz} \end{cases}, \quad \Delta \boldsymbol{\sigma} = \begin{cases} \Delta \boldsymbol{\sigma}_z \\ \boldsymbol{\tau}_{yz} \end{cases}.$$
(15)

S touto úpravou zůstávají v platnosti i vztahy (5), (6) a evoluční rovnice (7).

Při studiu konsolidace podloží popsaného dvouparametrickým Winkler-Pasternakovým modelem podloží vyjdeme z těchto úvah (Kuklík 1984):

- zemina je homogenní a izotropní prostředí;
- lze zanedbat vodorovné posuny *u*,*v* oproti svislému posunu *w* ;
- svislý posun obecného bodu v hloubce z lze vyjádřit v závislosti na posunu horního povrchu (z = 0). Rozložení posunu po výšce stlačitelné vrstvy $\psi(z)$ považujeme za známé.

Pro jednoduchost uvažujme přetvoření v rovině y, z za těchto předpokladů (obr. 4)

Obr. 4 smyková kotlina

$$w(y,z) = w(y,0) \cdot \psi(z), \qquad v(y,z) = 0,$$
 (16)

odkud

$$\varepsilon_{z}(y,z) = w(y,0) \cdot \frac{\psi(z)}{dz}, \quad \gamma_{yz}(y,z) = \frac{dw}{dy}(y,0) \cdot \psi(z), \quad (17)$$

kde ψ je známá funkce posunutí v tloušť ce vrstvy.

V analogii se vztahy (16) vyjádříme i vektor vnitřních proměnných

$$\gamma_{\mu}(z,t) = \left\{ {}^{1}\Gamma_{\mu}(t) \frac{\psi(z)}{\mathrm{d}z}, {}^{2}\Gamma_{\mu}(t)\psi(z) \right\}^{\mathrm{T}}.$$
(18)

Aplikací principu virtuálních posunutí se vektor přírůstku napětí transformuje na vektor přírůstku vnitřních sil $\{\Delta r, \Delta q\}^T$ a vektor přírůstku deformace na vektor $\{\Delta w, \Delta w'\}^T$. Význam jednotlivých složek těchto vektorů je patrný z obr. 4.

Přírůstková rovnice (3) pro podloží tak po úpravě nabude tvaru

$$\begin{cases} \Delta r \\ \Delta q \end{cases} = \left[\sum_{\mu=1,3,5...}^{M} \frac{8}{\pi^{2} \mu^{2}} \left(1 - \frac{1 - e^{-\Delta y_{\mu}}}{\Delta y_{\mu}} \right) \right]^{-1} \begin{bmatrix} C_{1} & 0 \\ 0 & C_{2} \end{bmatrix} \cdot \left\{ \begin{cases} \Delta w \\ \Delta w' \end{cases} - \sum_{\mu=1,3,5...}^{M} \begin{cases} {}^{1}\Gamma_{\mu}(t_{i-1}) \\ {}^{2}\Gamma_{\mu}(t_{i-1}) \end{cases} \right\} \left(1 - e^{-\Delta y_{\mu}} \right) \right\}$$
(19)

k níž přísluší evoluční rovnice (srov. s rov. (7))

$$\begin{cases} {}^{1}\Gamma_{\mu}(t_{i}) \\ {}^{2}\Gamma_{\mu}(t_{i}) \end{cases} = \begin{cases} {}^{1}\Gamma_{\mu}(t_{i-1}) \\ {}^{2}\Gamma_{\mu}(t_{i-1}) \end{cases} e^{-\Delta y_{\mu}} + \frac{8}{\pi^{2}\mu^{2}\Delta y_{\mu}} (1 - e^{-\Delta y_{\mu}}) \begin{bmatrix} C_{1} & 0 \\ 0 & C_{2} \end{bmatrix}^{-1} \begin{cases} \Delta r \\ \Delta q \end{cases}, \quad \mu = 1,3,5...$$

$$(20)$$

Tuhosti podloží jsou vyjádřeny známými vztahy (srov. Bittnar, Z. & Šejnoha, J.(1996), Kuklík(1984))

$$C_1 = \int_0^h E_{\text{oed}} \left(\frac{d\psi}{dz}\right)^2 dz \quad (\text{Nm}^{-3}), \quad C_2 = \int_0^h E_{\text{oed}} \psi^2 dz \quad (\text{Nm}^{-1})$$

3. Řešený příklad

Výsek panelového objektu je založen na pásech podporovaných vrstvou tloušťky h = 3,0m. Vlastnosti skeletu zeminy jsou vyjádřeny tuhostmi C_1 =60 MN/m³, C_2 =20 MN/m.

Harmonogram výstavby a nárůst zatížení (rozloženého podle obr.5) do třetího podlaží včetně je patrný z obr. 6.

6

Obr. 6 Harmonogram výstavby

V Obrázku 7 jsou znázorňěny průběhy posunutí bodu 1 (vyznačeném v obr. 3) při konsolidaci a dotvarování se smršťováním ($c_v = 0.02$ - propustná zemina) a posunutí způsobené samotným dotvarováním a smršťováním.

Obr. 7 Časové průběhy svislého posunutí

4. Závěr

8

- V tomto studijním příkladě se dotvarování a smršťování podílí na svislém posunu nejvyšších podlaží zhruba dvaceti procenty. U vysokopodlažních objektů může mít ovšem dominantní vliv.
- I když jsou k dispozici velmi účinné nástroje na řešení interakce konstrukce s podložím prostřednictvím soustavy (10) ve spojení s vysoce efektivními řešiči, jako je např. metoda FETI (finite element tearning and interconnecting method), pro praktické aplikace lze doporučit i zjednodušený model popsaný v odst. 2.2 a aplikovaný v odst. 3.

5. Poděkování

Příspěvek byl vypracován za podpory výzkumných záměrů MSM 210000001 a MSM 210000003.

6. Literatura

- Bittnar, Z. & Šejnoha, J.(1996) : Numerical methods in structural mechanics. ASCE Press, Thomas Telford, New York, London, (422pp), "Numerické metody mechaniky I,II", Praha ČVUT, (1992)
- Fajman P. (2002) : Nelineární a časově závislá analýza stěnových systémů budov, Habilitační práce ČVUT, Praha (80 str.)
- Krejčí, T. Nový, T. Sehnoutek, L. Šejnoha, J.(2001): Structure-subsoil Interaction in View of Transport Processes in Porous Media. CTU Reports, 5, No. 1, (81pp.)

Kuklík P. (1984): "Příspěvek k řešení vrstevnatého podloží", Pozemní stavby 7, 1984

Vaníček I. (1996): "Mechanika zemin", skripta ČVUT, Praha