
National Conference with International Participation

ENGINEERING MECHANICS 2003
Svratka, Czech Republic, May 12 – 15, 2003

paper no.

255

COMPUTATIONAL METHODS FOR EVALUATION OF OVERALL
RESPONSE OF COMPOSITE MATERIALS
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Summary: The purpose of this contribution is to introduce a comparison of two 
Finite Element-based methods for computing the mechanical response to 
(thermo)mechanical loading of composites on micro-scale. Namely, the classical 
homogenization method based either on the Hashin-Shtrikman method or on the 
existence of a suitable periodic unit cell, and the reduced substructuring 
approach, where the number of condensed nodes varies are studied in this work. 

 

 

1. Introduction 

It was recognized long ago that a successful prediction of the macroscopic behavior of 
complex layered composite structures calls for modeling on various size scales. Multi-scale or 
hierarchical modeling now offers means to bridge length scale differences ranging from the 
size scale of microns to large composite structures (see [1], [2], [5]).  In context of the present 
paper, the large macroscopic structural part is represented by the wound composite tube, 
Fig. 1, while the smallest scale considered herein is of the size of graphite fiber diameter, 
which is about 10 microns. 

While the periodic nature of a fiber-tows arrangement reduces the basic geometrical model 
on meso-scale to a certain periodic unit cell, the distribution of fibers within individual tows 
(micro-scale) shows random character, see Fig. 1. Analysis of material systems with periodic 
fields is now well understood and the interested reader may consult works [6] and [7], among 
others, for more details. Analysis of material systems with disordered microstructures, 
however, is still a subject of ongoing research.  

Since fibers are randomly distributed within the bundle and since this distribution is likely 
affected by the initial fiber pre-stress it is advisable to treat analysis on this level from the 
point of view of probabilistic methods. To provide for the lack of periodicity, one may 
incorporate various types of n-point statistical descriptors in the analysis of disordered media. 
Such statistical descriptors introduce information beyond that contained in the volume 
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fractions. It turns out that the two-point correlation function Srs, which gives the probability of 
finding two points x1, x2 randomly thrown into the media located in the phases r, s, is 
sufficient for determining the effective properties of the composite. 

Once this function is known we may generally proceed in two different ways. The first 
approach draws on the extended Hashin-Shtrikman (H-S) variational principle. The material 
properties obtained by homogenization based on the H-S variational principle can be used 
directly in the classical version of the Finite Element Method. 

 

 

 

Fig. 1: Multi-level modeling of woven tubes 

 

The second approach relies on the existence of a suitable periodic unit cell, where the 
reduced substructuring technique is employed. In our case, where the scale difference 
between micro scale and meso scale is large, such a method may seem as ineffective 
comparing to classical homogenization technics. On the contrary this approach appears to be 
more suitable for the analysis of meso-macro transition, but a study of this technic on meso 
scale is difficult due to the complicated three-dimensional geometry of a periodic unit cell.  

Moreover, it naturally results in a certain “meso finite element”  with stiffness matrix that 
can be directly introduced in the standard finite element analysis on meso-scale level and so 
such a strategy is very well suited for computational parallelization, where individual unit 
cells are computed separately and then included into the mesoscopic mesh. In the case of 
inelastic analysis, however, a suitable operator, which extends fields of deformation and 
stresses from the boundary of a periodic unit cell into its interior, must be developed. Clearly, 
such a mapping can be efficiently defined in the framework of the finite element method 
analysis and is consistent with the parallel strategy. 

The paper is organized as follows. First, theoretical background for reduced substructuring 
and homogenization based on the Hashin-Shtrikman principle is given. Next, some numerical 
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experiments at micro level are shown to explain and provide solution to the problems 
encountered in the three-dimensional analysis.    

 

 

2. Reduced substructuring 

Recently, problem-specific continuum elements have been developed to account for a textile 
and woven type mesostructure within a single element; see [12], [9] for more details. The 
elements introduced in these references are based on a single assumed displacement field 
throughout the entire mesostructure. A more flexible element formulation, based on general 
reduced substructuring theory [11], is presented herein. Note that this approach incorporates a 
single field approximation as a degenerated state. 

Fig. 2: Example of finite element mesh for micro-scale periodic unit 

 

In brief, the implementation begins with the development of a standard finite element mesh 
for the periodic unit cell on the meso-scale (an example of such a mesh can be seen in Fig. 2). 
Then, interior degrees of freedom (dofs #1—4 in Fig. 2) are statically condensed out. Next, 
the number and location of the desired boundary degrees of freedom is selected. Finally, the 
remaining boundary degrees of freedom are expressed in terms of the desired boundary 
degrees of freedom. To describe this procedure in more formal way, assume that the 
governing equations resulting from the finite element discretization are partitioned as follows 
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where XXΚ  are submatrices of the global stiffness matrix, XF  are nodal forces, Aq  is the list 

of unknowns to be condensed out and Bq  are unknowns, which will  remain. Before imposing 
the multipoint constrains on the excess boundary degrees of freedom (dofs), the reduced 
stiffness matrix and load vector can be expressed as 

                                              ABAABABBBB ΚΚ−Κ=Κ −1K ,                                                  (2) 

                                                      AAABABB FFF 1K −Κ−= .                                                  (3) 
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 This procedure is often not very efficient because of matrix inversion, which destroys 
sparsity pattern of AAΚ , and expensive matrix-matrix multiplications. The elimination of 
internal dofs can also be accomplished using the Gaussian elimination if the dofs to be 
eliminated are grouped together either at the beginning or the end of the list of unknowns. In 
such a case assume that the nA dofs to be eliminated are stored at the beginning of the list of 
unknowns.  Then a direct Gaussian elimination procedure is carried out on An  columns (i.e. 

eliminating An  columns). Iteratively, this procedure is expressed as follows: 

1. For  i=1 to An  begin 

2. For  j= i to n begin 

3. For s= i to n begin 

4. jiisjsiijs ΚΚ−ΚΚ=Κ  

5. ijisiis FFF Κ−Κ=  

6. End of loop. 

 Of course, pivoting can be integrated into this process as well. After that, the reduced 
stiffness matrix appears in the right bottom corner of the matrix. When the interior dofs are 
condensed out the multipoint constraints can be applied to the remaining dofs to eliminate 
unwanted boundary dofs. This can be expressed in the matrix form as microB qq Τ= . The 

transformation matrix T determines how the excess boundary dofs are slaved to the meso 
element dofs. It should be noted that if the internal dofs are also slaved to the meso-element 
dofs (rather than statically condensed), a single field approximation (i.e. field of translation is 
constant on the condensed element) is obtained. Further, it is not always efficient to order the 
dofs such that the Gaussian elimination can be used to obtain the reduced stiffness matrix and 
load vector, since such ordering might result in a large bandwidth when the standard skyline 
storage scheme is used. 

 An alternative procedure relies on the formal definition of the stiffness coefficients ijΚ , 

ijΚ  =  force at dof i due to unit displacement at dof  j. 

 Using this definition, we would simply solve a series of problems in which one dof is set 
equal to one and the rest of the boundary dofs would be constrained to zero. The reaction 
forces at all the boundary dofs constitute one column of the reduced stiffness matrix. This 
process is repeated for each boundary dof to obtain the entire reduced stiffness matrix. The 
reduced load vector is determined by solving one additional problem in which all boundary 
dofs are constrained to zero and the internal loads are applied. The negative of the boundary 
reaction forces constitute the reduced load vector contribution for the internal loads. Once the 
reduced set of equations is obtained, the multipoint constraints can be imposed to eliminate 
unwanted boundary dofs.  

The Lagrange polynomials, the Hermite polynomials, splines or  any other approximation 
functions can be used as a basis for multipoint constraints. For example basic linear 
interpolation can be involved on micro-scale periodic unit cell (see Fig. 3). It yields only four 
nodes (nodes #11,12,13,14) will be preserved for meso finite element. One standard base 
function is shown in Fig. 3. In this case the dimension of the matrix T will be 28 � 8. 
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Alternative, more efficient, methods were developed to decrease the amount of operations in 
reducing the stiffness matrix. See, for example, [10] for more details. 

 

Fig. 3: Standard base function for multipoint constraints  

 

 

3. Homogenization on micro scale 

As already suggested  in [14] the computational modeling on this level of sophistication calls 
for numerical procedures allowing investigation of random, non-periodic systems. In what 
follows we assume that such a system can be characterized by statistically homogeneous 
distribution of reinforcements. Then, an efficient and reliable solution procedure for 
evaluation of both local and overall response of a tow F (a bundle of fibers f) on micro-scale 
can be developed on the basis of Hashin-Shtrikman variational principles for elastic media. 
See [13], [14] for further discussion on this subject. This section reviews just a few basic 
steps.  

With reference to combined meso-micro analysis we consider only the primary principle 
and write the two equivalent representations of local stresses in the form 

                            )()()()( xxxLx λεσ +=           )()()()( 0 xxxLx τεσ += , (4) 

where )(xL  is the local stiffness matrix and 0L  is the stiffness matrix of a certain 
homogeneous reference medium. Recall that the Hashin-Shtrikman functional written as 
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where E and Σ  are the overall strains and stresses supplied to the medium from the analysis 
on meso-scale. The fluctuation part ε ′  of the local strain ε  is provided by (see  [8]) 

                                                       Exx −=′ )()( εε . (6) 

To facilitate the solution we further restrict our attention to a piecewise uniform distribution 
of polarization stress rr ττ =)(x and the eigenstress vector rr λλ =)(x  within a given phase 
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Wierer, M., Šejnoha, M., Zeman, J. 5



r=f,m (fiber, matrix). The eigenstress vector rλ  can be attributed to various physical sources 
such as thermal loading, plasticity, initial prestress, etc. Taking an ensemble average of 
functional (5) and performing its variation with respect to rτ  finally supplies a set of 

algebraic equations for unknown phase averages of polarization stress rτ   

         �
=

−− −+=−−
n

s
rrrrsrsrrrs ccc

1

1
0

1
0 ,)(])([ λτδ LLEALL             ,,,1 nr �=  (7) 

where rsA are certain microstructure-dependent matrices. Formal inversion of (7) yields the 

mesoscopic constitutive equation for a tow  

                                                   mesomesomesomeso λεσ += L , (8) 

where E=mesoε . The overall stiffness matrix Lmeso (effective stiffness matrix of a fiber tow) 

and the macroscopic eigenstress vector mesoλ (initial stress vector prescribed on meso-scale 

that results from an initial fiber prestress fλ )  are provided by 
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Trs  then represent individual blocks of the inverse matrix to the left hand side of system (7). 

 

Fig. 4: 2D mesh of  the periodic unit cell 

 

 

4. Results of analysis on micro scale 

This particular study (recall Section 2) is focused on the influence of the amount of the 
boundary nodes condensed out and on the suitability of using homogenized material 
properties derived in Section 3. A hexagonal packing of carbon fibers embedded in an epoxy 
matrix is used as testing two-dimensional example. Two numerical models are developed.  
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The first approach uses macro elements. The macro element employed for reduced 
substructuring (highlighted in the center) and the mesh of this periodic unit cell is depicted in 
Fig. 4. The full mesh has 72 boundary nodes. Five macro elements (i.e. elements with some 
nodes condensed out) with variable amount of boundary nodes are created. In particular, 72, 
36, 18, 8 and 4 boundary nodes are preserved after the condensation. An example of a mesh 
created from elements with eight preserved nodes is depicted in Fig. 5.  

 

 Fig. 5: Numerical model from macro elements with 8 nodes 

 

 The second model draws upon homogenized material properties. The effective material 
properties obtained by homogenization based on the primary Hashin-Shtrikman variational 
principle [14] are used for mesh composed of Constant Strain Triangles, where two triangles 
cover one macro element. 

 

Tab. 1: Comparison of models using either homogenized material properties or reduced 
substructuring 

 

 Displacement Time Number of nodes 

Condensed 72 0.0073 146.39 3861 

Condensed 36 0.0085 17.79 1881 

Condensed 18 0.0121 1.69 891 

Condensed 8 0.0244 0.17 341 

Condensed 4 0.0657 0.07 121 

Homogenization 0.0061 0.05 121 
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 Finally a mesh from 10x10 macro elements (200 triangles) is formed. See Fig. 5 for the 
mesh composed of macro elements with 8 nodes. Such a structure is loaded at one side with 
prescribed normal tractions such that the overall sum of nodal forces remains constant for 
every type of meshing. The opposite side is fixed. Comparison of average displacement of 
loaded nodes with a computing time appears in Tab. 1 and Fig. 6. Note that the result obtained 
from 72-element boundary nodes is the exact one (the same as if we used '”meso mesh” on  

Fig. 6: Comparison of relative displacement 

 

the entire structure). The results indicate that the reduction of the number of boundary nodes 
leads to a considerable error. Condensing out a half of boundary nodes gives approximately 
25% error in displacement even for a uniform loading. As expected, the reduction of the 
number of boundary nodes in static condensation (reduced substructures) decreases rapidly 
computing time consumption. The error in displacements, however, increases rapidly as well, 
and so such a reduction does not appear to be very appropriate. The homogenized properties, 
on the other hand, predict the overall behavior with the reasonable precision (error is about 
10%) with a substantially smaller computational time. 

 

 

5. Conclusion 

This article shows one possible way for computing the mechanical response of composites 
subjected to  (thermo)mechanical loading. The approach is based on the static condensation 
and mesh of periodic unit cell on the micro-scale. The results of two-dimensional analysis 
reveal fundamental importance of a number of nodes to be condensed out. In particular, it 
directly follows from the presented analysis that only the internal nodes can be condensed out 
since the condensation of even a small subset of boundary nodes introduces large errors in the 
analysis and so some multi-point constraints to preserved boundary nodes must be involved. 
The homogenization method, on the other hand, seems to be a reasonable approach to the 
modeling of a given heterogeneous body as the uniform stress fields occur in this particular 
case. We expect, however, that for three-dimensional problems, the error of the 
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homogenization method is not negligible and thus the static condensation approach, combined 
with parallel implementation, is inevitable. This topic will be considered in the future work.  
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