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Summary: The paper presents theoretical and preliminary experimental results
attempting to validate the modified nucleation theory for mixtures (published by
Maršík et al. (2002)) for the case of cavitation. The non-equilibrium (dissipative)
processes involved in the origination of a nucleus are expressed using an experi-
mentally obtained coefficient. The value of the coefficient is estimated from the
cavitation experiment in a convergent-divergent nozzle. It is assumed that the en-
ergy of thermodynamic fluctuations near the breaking tension is comparable to
the minimum work of formation of a bubble. In addition, the effect of mass trans-
port across the bubble wall is discussed in numerical experiments using the previ-
ously published modified Rayleigh-Plesset equation.

1  Introduction

Cavitation is one of the critical engineering challenges for hydrodynamic machinery design-
ers. Currently, the problem of prediction of cavitation regions in the liquid flow often relies
on the “heterogeneous” view of the problem, i.e. it is assumed that a given (usually experi-
mentally obtained or empirical) population of nuclei is convected to the region of low pres-
sure within the flow where the nuclei become activated and cavitate. Bubble nucleation is dis-
regarded assuming that pre-existing microbubbles or other particle or chemical heterogenei-
ties (or even ions) serve as sole origins for cavitating bubbles. Although practical observations
are often in good agreement with solutions based on the above assumptions, the origination of
microbubbles and the role of other factors (such as gas contamination) have not been de-
scribed satisfactorily mainly due to the fact that the classical theory of homogeneous nuclea-
tion fails to predict the experimentally observed nucleation rates for boiling and cavitation at
temperatures far from the critical point.
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2  Revision of the nucleation theory

This work relies on the theoretical extension of the classical theory of homogenous nucleation
suitable for mixtures published by Maršík et al. (2002). In this extension, the discrepancy
between the nucleation rates obtained from the classical theory and the experiments is ex-
plained by the effect of non-equilibrium (dissipative) processes on the work of formation of a
nucleus of the new phase. The change of the nucleation barrier due to these dissipative phe-
nomena (caused for example by bubble dynamics, departure of the liquid from purity, and
even some heterogeneous effects) is expressed using a substance dependent correction coeffi-
cient which must be determined experimentally.

In the classical nucleation theory the nucleation rate J is expressed using the Döring-
Volmer formula:

3
1

2 expL
WJ

m kT
σρ

π
� �= −� �
� �

(1)

In the above, Lρ  is the liquid density, k is the Boltzmann constant ( 231.38 10  J/K−⋅ ), T is
the liquid temperature,σ  is surface tension, and 1m  is the mass of one molecule. In this ex-
tension, the nucleation work W is split into the equilibrium portion eqW  and the non-
equilibrium portion noneqF :
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In Eq. (2), iVLµ∆  denotes the change of the chemical potential of component i due to
evaporation (the difference between the chemical potential of the liquid and the vapor phase,

iVL iL iVµ µ µ∆ = − ), p is pressure, and α  is the coefficient capturing the dissipative processes.
For a one-component system ( 1i = , iVL VLµ µ∆ → ∆ ), the coefficient is defined as follows:

( )
( )

, ,
2 ,
noneq VL

eq VL

F T p
W

µ
α

µ σ
∆

= −
∆

, where 0 1 2α≤ ≤ (3)

The coefficient α  expresses dissipative effects involved in the origination of the nucleus
such as inertial and damping effects coupled with evaporation and diffusion of contaminant
gas (described by Eq. (6) in Chapter 5).

In order to express the equilibrium portion of the nucleation work the theory of thermody-
namic fluctuations has been engaged (Maršík et al. (2003)) yielding the following formula for
the dimensionless equilibrium nucleation work (Gibbs number) /eq eqGb W kT= :
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It has been assumed that the energy of thermodynamic fluctuations near the maximum su-
perheat or maximum breaking tension is comparable to the minimum work of formation of a
bubble. The key factors in formula (4) are the surface tension σ  and the value of ( )Tp v∂ ∂  at
the saturation line (v is specific volume). The latter quantity represents the ability of the liquid
to withstand tension at phase transition and is shown in Fig. 1a in for water in reduced coordi-
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nates ( / critp p p= , / critv v v= , / critT T T= , where critp , critv  and critT  are pressure, specific
volume, and temperature at the critical point, respectively).
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Fig. 1 a) The dependence of ( / )Tp v− ∂ ∂  on the reduced temperature for water at the satura-
tion line (from IAPWS 95 data). b) The variation of the critical nucleus radius (the most prob-
able fluctuated volume) with temperature for different assumed values of the Gibbs number.
Calculated from Eq. (4) and IAPWS 95 data.

The nucleation rate for cavitation takes the final form,
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3  Theoretical estimation of αααα  for water

Table 1 contains the theoretical estimation of the value of α  based on the theory described in
Maršík et al. (2003). It has been assumed that the pressure fluctuations at the saturation line
are equal to the tensile strength of water. The value of the Gibbs number has been set to typi-
cal values 60 70Gb = ÷  observed by most experimentators. However, the corresponding vol-
ume fluctuations for spinodal breakdown theory (i.e. pressure fluctuation p∆  equal to the
breaking tension 810  Pa  at 20°C) correspond to very small values of nucleus radii R which
are comparable to the size of a water molecule. The associated non–equilibrium portion of the
nucleation work noneqF  is about 20 times larger than the equilibrium work eqW .

It has been demonstrated in Zima (2003) that the theory predicts very high nucleation rates
at any temperature. In order to obtain nucleation rates in the desired region 65 70Gb = ÷ , the
corresponding fluctuation must be in a narrow range about 810  m−  (see Fig. 1b). It can be
speculated that in a pure liquid, the most probable volume fluctuations would always produce
explosive nucleation rates. In a real fluid contaminated with gases and heterogeneous impuri-
ties, however, only bubble volumes greater than a certain value (for example 25 310  mV −≈ )

Zima, P., Maršı́k, F. 3



serve as origins of the new phase. The probability of thermodynamic fluctuations of this mag-
nitude is practically zero at the given temperature. Since the corresponding portion of the
non–equilibrium work is immense (as will be shown in the next chapter) this is a demonstra-
tion of the expected fact that other significant non–equilibrium processes are responsible for
nucleation in water at normal temperatures. It also implies that the search for an improved
formula determining the equilibrium work of formation of a nucleus has to be continued in
order to provide more acceptable values in the range of observed nucleation rates and critical
radii.

Table 1.  Estimation of α  for cavitating water for various assumed values of the Gibbs num-
ber. Fitted to the theoretical breaking tension at 20°C.

Temperature 293.15 KT = Pressure fluctuation 810  Pap∆ =
Calculation from the theory

Correction αBubble radius R [m] eqGb
Gb=65

(J= 122 10⋅  [m-3 s-1])
Gb=70

(J= 102 10⋅  [m-3 s-1])
–9.10 –9.84

Ratio of non-eq. and eq. work noneq eqF W
102.12 10−⋅ 3

18 20

4  Experimental estimation of αααα  for tap water

The value of α  for tap water has been estimated experimentally using the experimental setup
based on the convergent-divergent nozzle principle and described previously in Zima &
Maršík (2001). It is assumed that bubbles are nucleated before entering the convergent section
of the nozzle where the nucleation is ceased and the number of nucleate bubbles remains con-
stant. The bubbles then grow in the convergent section and they reach the throat where the
void fraction is estimated from the measured throat pressure (given the choked flow condi-
tions have been achieved in the nozzle). The growth of bubbles in the convergent section is
calculated using the Rayleigh-Plesset equation and the initial (critical) bubble radius at the
entrance to the convergent section is calculated from the revised nucleation theory described
in Chapter 2.

The value of α  for tap water at 15.8°C has been estimated to be 0.4994α =  for the as-
sumed value of the nucleation rate 12 -3 -110  nuclei m sJ = . This corresponds to non–equilib-
rium portion of the nucleation work equal in magnitude to the equilibrium portion work
( / 1noneq eqF W � ) and the critical radius 76.5 10R −= ⋅  m.

5  Mass transport across the bubble wall

The present-day modeling of mass transport across the surface of a bubble in a liquid follows
two basic schemes: full single bubble models and simplified solutions to the mass diffusion
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equation tailored to specific problems (such as rectified diffusion). The first scheme is associ-
ated with substantial computational difficulties with the little prospect of implementing into
the practical models of cavitating flows, whereas the second scheme provides useful insight
into the mass transfer effects, however, generalization to complex problems is not possible
because the bubble dynamics is disregarded. Recently, Preston et al. (2001) have combined
the full single bubble model with the simple Rayleigh–Plesset equation to identify areas of
possible simplifications to the full single bubble model. Our approach is based on using the
revised Rayleigh–Plesset equation presented in Zima & Maršík (2000). This equation (unlike
the widely used simple R–P equation) includes the effects of mass transport across the bubble
wall via the mass flux per unit area, Bj :
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R  is the bubble radius, Lµ , Lρ , σ  are the dynamic viscosity, density, and surface tension
of the liquid, respectively, and Bp , p∞  are the bubble and ambient pressures, respectively.
Eq. (6) has been to engaged in two numerical experiments after showing encouraging results
for the problem of bubble dissolution by gas diffusion. First, the mass flux Bj  across the bub-
ble surface has been modeled using the assumption of steady gas diffusion:

( ) /B L LB LBj D c c Rρ ∞= − − (7)

D  is the diffusivity for the given gas–liquid combination, LBc ∞  and LBc  are mass concen-
trations of gas in infinity and at the surface, respectively. The application to rectified diffusion
(Fig 2a) shows good adherence to the theory found in Fyrillas & Szeri (1994). In the second
experiment, the mass transport due to phase transition at the bubble wall has been modeled by

( )3
2

1
2 2 2

0 2B V LV Vj h R R T R rαρ λ π
−

∞= − � � (8)

where α  is the accommodation coefficient, LVh  is the evaporation heat, T∞  is the ambient
liquid temperature, 0R  is the initial bubble radius, Vr�  is the gas constant of vapor, λ  is the
liquid thermal conductivity, and Vρ  is the vapor density. Fig. 2b shows the effect of the phase
transition on bubble growth which is in accordance with Preston et al. (2001).

Fig. 2 a) The bubble growth rate vs. equilibrium radius for 0.2 bar sinusoidal pressure forcing
at 1 bar (Fyrillas & Szeri (1994) (theory = solid curve, round points = numerical experiment).
Numerical solution by Eqs. (6) and (7) represented by triangles. b) A bubble growth–collapse
cycle with phase transition (dashed curve) and without phase transition (solid curve).
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6  Conclusion

One of the motivations for this research are very low nucleation rates in cavitation predicted
by the classical theory of homogenous nucleation. On the other hand, the nucleation rates pre-
dicted by the revised theory presented in Maršík et al. (2002) and (2003) are very high indi-
cating that substantial non–equilibrium effects are responsible for lowering the nucleation
rates. The energy dissipation accompanying bubble formation must be studied further. Possi-
ble areas for investigation are the effect of temperature fluctuations and the dependence of
surface tension on curvature and chemical composition (concentration and type of contami-
nants).

The modified Rayleigh-Plesset equation (with the inclusion of mass transport across the
bubble boundary) improves the accuracy of modeling of bubble dynamics and proves that gas
diffusion can be neglected for macroscopic bubbles and short time scales whereas the effect of
phase transition should be considered in many cases.

The authors wish to thank the Grant Agency of the Czech Republic for support under
grants No. 101/00/1282 and 101/02/0364 and the Grant Agency of the Academy of Sciences
of the Czech Republic for support under Grant No. S2076003.

Literature

Fyrillas, M.M., Szeri, A.J. (1994) Dissolution or growth of soluble spherical oscillating bub-
bles, J. Fluid Mech., vol. 277, pp. 381-408.

Maršík, F., Delale, C.F., Sedlář, M. (2002) Condensation and Cavitation in the Water and
Water Mixtures, in: Proc. 3rd Intl. Conf. on Transport Phenomena in Multiphase Systems,
Heat 2002, Baranów Sandomierski, Poland, pp. 61–68.

Maršík, F., Zima, P., Sedlář, M. (2003) Estimation of Boiling and Cavitation Rates Based on
Thermodynamic Fluctuations, accepted for publication in: 5th Intl. Conf. on Boiling Heat
Transfer, Montego Bay, Jamaica.

Preston, A. T., Colonius, T., Brennen, Ch. E. (2001) Toward Efficient Computation of Heat
and Mass Transfer Effects in the Continuum Model for Bubbly Cavitating Flows. CAV
2001: Fourth International Symposium on Cavitation, CIT Pasadena.

Zima, P., Maršík, F. (2001) The effects of mass transfer in Rayleigh-Plesset bubble dynamics
and cavitation modeling in a convergent-divergent nozzle, in: Proc. National Conf. with
Intl. Participation Engineering mechanics 2001, Svratka, pp. 302–303.

Zima, P., Maršík, F. (2000) Bubble Dynamics in a Water-Gas Solution, in 4th EUROMECH
Fluid Mechanics Conference – Book of Abstracts, Eidhoven.

Zima, P. (2003) Cavitation Rates and Bubble Dynamics in Gas-contaminated Water, PhD
Thesis, Faculty of Mech. Engg., Czech Technical University, Prague.

6 Engineering Mechanics, Svratka 2003, #286


