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Summary: The paper deals with a frictionless contact problem of two parallel 
congruent rigid cylinders, one encased in the other. The cylindrical surfaces are 
coated with thin elastic, transversely isotropic and incompressible layers. A 
simplifying approximation for the displacement in the coating enables to 
formulate the problem using the stress and strain averaged through the coating 
thickness (for the method see Matthewson M. J., J. Mech. Phys. Solids 29(1981), 
89-113). Analytical results are obtained for the contact width and contact 
pressure distribution. The results are applied to the human ankle joint and 
generalized for articular cartilage with depth-dependent properties. 

 

 

1. Introduction 
Coated bodies are widely used in building materials, tribosystems, microelectronic industry, 
etc. Rubber linings have important applications in the design of polygraphic, textile and paper 
machinery. Compliant coatings are frequently applied to suppress noise, quell vibrations, 
delay laminar-to-turbulent transition and reduce skin-friction drag on naval vessels and 
airplanes. Elastomeric materials have found a wide use for protecting components from 
impact damage. Incompressible elastomers are successful partly because of their large strain 
to fracture, resulting in ability to absorb large amounts of the impact energy in elastic 
deformation. These materials are inherently weak and are reinforced by adhesion to the 
substrate. This reduces the strains in the coating, which would otherwise be large. Good 
adhesion is essential for their optimal performance. 

The mathematical problem of the contact of a rigid punch pressed against a compliant layer 
bonded to a rigid half-space is of great practical interest. Cylindrical, spherical and flat-ended 
indenters were discussed by the Russian writers Lebedev, Ufliand, Aleksandrov and Vorovich 
in the early sixties. Meijers (1967) obtained an asymptotic solution to the problem of a rigid 
cylinder pressed on an isotropic elastic layer of any thickness and any Poisson’s ratio. 

Matthewson (1981) published an interesting solution for the indentation of a thin elastic 
coating, bonded to a rigid half-space, by a rigid axially symmetric punch. The essence of the 
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method lies in the fact that a simple polynomial approximation across the layer thickness for 
the displacement vector is assumed and an averaging technique through the layer thickness is 
applied. Due to the approximation of the displacement vector, most equations and conditions 
can be satisfied only averaged through the coating thickness. Matthewson obtained simple 
analytic formulas for the contact pressure distribution and contact width. Especially, in the 
case of a volumetrically incompressible compliant coating, these analytic results agreed 
surprisingly well, when compared to the numerical results of other authors. The coating was 
considered plain (i. e. not curved), homogeneous and isotropic. The indenter had no coating. 

In order to simplify problems, the curved coatings are often considered plane and only 
their relative (effective) curvature is taken into account. However, it is apparent that both the 
contact width and maximum contact stress can be considerably higher for curved coatings and 
the same total load, compared with the plane case. This is the case if the contact width and the 
curvature radius are of the same order of magnitude. In fact, the surface traction in a 
frictionless contact is normal to the coating surface. In an axially symmetric curved case, only 
one component of the traction (that parallel with the symmetry axis) contributes to the total 
load. The other part (that perpendicular to this axis) cancels out. 

Using the Matthewson averaging method, the contact of two parallel cylindrical rigid and 
highly congruent bodies, one encased in the other and pressed against each other, both coated 
with soft incompressible elastic transversely isotropic coatings of a constant thickness, is 
analysed in the paper. The effect of coating curvature is taken into account using cylindrical 
co-ordinates. With a high surface congruency, the difference of the curvature radii of the 
mating surfaces is small compared with their curvature radii. Moreover, the total compressive 
load is assumed as high that the contact width is of the same order of magnitude as the 
curvature radii, while the coating thickness should be much smaller than the contact width. 

 

 

2. Contact of encased coated cylinders 

Two parallel circular rigid cylinders, a solid cylinder of radius  encased in a hollow one of 
radius , with  (high congruency), are coated with thin elastic 
layers of a constant thickness h  (Fig. 1). In what follows, subscript C (C for coating) 
substitutes subscript S (S for solid) and H (H for hollow), used with the quantities referred to 
the coated solid and hollow cylinder, respectively. Two parallel cylindrical coordinate 
systems , with the z-direction along the cylinder axes and with the plane of symmetry 

, are introduced. For the coatings,  and . Due to 
symmetry, it is sufficient to consider only one half of the cylinders and choose  in the 
interval . The cylinders are compressed by a vertical force W (per unit cylinder 
length), acting in the plane of symmetry. 

SR

HR

HR R>

C C, ,r φ
0=

C0 φ≤

S S

z

π

H SR R R R− = ∆ �

SR�

S Hφ φ= H HR h r− ≤ ≤ S S SR r R h≤ ≤ +

Cφ
<

Materials of the coatings are incompressible and transversely isotropic with the isotropy 
axis normal to the coating surface. The physical components of the stress and strain tensors 

, referred to unit base vectors, are used. The form of the constitutive 
equations (the coating is incompressible, linear elastic, transversely isotropic and 
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homogeneous) in the cylindrical co-ordinates  is given by the equations (Pipkin, 
1976) 
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Cp  is the hydrostatic pressure. There are three independent material parameters: the two 
Young moduli ,rE Eφ  and the shear modulus . Due to incompressibility, the Poisson 
ratios ,r zφ φν ν

/ 2(1zφ φµ =

 take the values . Transverse isotropy yields 
. The compliances 
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The elastic coating is assumed to undergo small plane deformation in the plane and 
touch along an unknown cylindrical surface F.  and  of a fixed point at F differ little for 
thin coatings and need not be distinguished. The same goes for  and  (except for the 
difference ). To simplify, if it is not the coating but the magnitude that matters, 
subscript C is often left with , writing , R instead. Let a bar over a quantity refers to 
that at the edge of F. For example, 

C C -r φ
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φ  denotes  of the point at the contact edge. The contact 

half-width is s = Rφ . In the paper, W is assumed high enough that /h s �1, s  and  being 
of the same order of magnitude, i. e. 

R
s R∼ . Also, it should hold that φ π< .  may be 

one order higher than . The above assumptions (i. e. 
,rC Cφ

µ , ,s , R∆h R Rh� � s R∼ � ) are 
necessary for the use of the applied averaging method. They also simplify the results as some 
terms in the equations are small and can be neglected. As s R∼ , the coating curvature effect 
is taken into account by using the cylindrical co-ordinates. For h s R� �  it would be 
sufficient to consider the coatings plane. 

The non-zero physical components of the displacement vector in the C-coating, referred to 
the location of the rigid cylinder after deformation, are approximated by finite power series in 

 in the form Cr
2
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Here and in what follows, the lower sign is taken with  and the upper with . 
 and  are unknown smooth functions of . For , they are defined inside 
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symmetry it holds that  and . Note 
that  in (3) meet the bonding conditions  at . The non-zero 
physical components of the infinitesimal strain tensor for plane strain are 
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A comma followed by r or  denotes a partial derivative with respect to  or . The 
equilibrium equation in the -direction in plane strain expressed in the physical components 
of the stress tensor is 
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Due to the simple approximation (3), most equations and boundary conditions can be 
satisfied only averaged through the coating thickness h , while some boundary conditions are 
met point-wise. The average C C( )f φ  of a function  in the element  

extending through  is denoted by 
C C C( , )f r φ C Cdh R φ×

h C C CC
d /f f r= ∫ ChR

C

r . The integral is taken from  to 

 and from  to  for the S- and H-coating, respectively. Note that the averaging 
procedure through h makes the equilibrium equation in the r -direction irrelevant. Introduce 
(3) into (4) and integrate over  to obtain (after leaving small terms) the averaged strains for 
any  as 
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The following continuity conditions are introduced at point φ : 

   1C 2C 1C 2C 1C 2C 1C 2C, , ,rr rr r r p pφφ φφ φ φε ε ε ε ε ε= = = = .  (7) 

These conditions also guarantee the continuity of all averaged components of the stress tensor 
at φ . (6) yield the average incompressibility condition, C C 0j rr j φφε ε+ = , in the form 
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The contact is assumed frictionless and the condition  at  with  and 
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Insert the equations ,  with the use of (4) into (5) and 
apply the incompressibility condition to obtain the equilibrium equation (5) as 
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Use the expansion (3) for u , integrate over , neglect small terms and obtain C C,j juφ r h

    C, C, C( ) 2j jp Cφ φ φµ γ µ β= − + jR .    (11) 

(3-6), (8-11) are valid for any . Now, deduce the equations valid either inside or outside the 
contact. 

φ

Outside the contact (with ), the condition 2j = 2C 2Crr pσ = − + 2C 0r rrC ε =  is introduced, 
yielding with the help of (6)1  

2C 2Crp C γ= .      (12) 

Inside the contact, cut the deformed coatings off the rigid substrate. Roll out the cylinder 
with radius  (it could be also ) in the way that it becomes plane. The coatings remain 
joined and their deformed thickness unchanged. Radius  (alternatively ) changes into 
radius , with 1/ . Approximate quadratically in  the total 

deformed thickness  (the sum of both deformed thicknesses) for 
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where  is an unknown constant. Having obtained (14) in the rolled-out state, 
come back to the curved state. As the extension in the normal direction is not changed, (14) 
remains also valid for the curved coatings. Inside the contact, beside the geometric condition 
(14), introduce the condition for the averaged normal stress at any  (

0 0 Sh hρ ρ= − −� H

φ φ φ≤ ): 

     1H 1Srr rrσ σ= .      (15) 
Differentiating (15) and using (1), (6), (10-11) and (14) give  the same for both 
coatings in the end. A detailed deduction is omitted here. 
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(7)  yield with the help of (6) 1,  and (9) 1,3 3
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It is clear now that also  are the same for both coatings. Thus, in what follows, 
for the same coatings, subscript C is left with  and the other quantities. (20) and 
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It remains to find the contact half-width s  that is obtained from the total vertical load 
condition 
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The total normal load W becomes n
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The term with 2 /h s 2  is kept in (25-26) as for anisotropic coatings it may be of order /h s  (if 
). Note that W  in (26) depends on  only through , and on C µ� n H ,R RS eqR s . Take the limit 

 with  kept constant in (25). CR →∞ eqR φ  becomes small for large , but in the limit, CR

s Rφ=  tends to a positive constant. For low φ , expand sines, cosines and the exponential 
function in (19) , (25) into the Taylor series. In the limit  ( R  fixed), W  and 
(25) tends to (26). 
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3. A model of the human ankle joint 
As an illustration, consider a human ankle joint loaded by the body weight. This joint can be 
simply taken as cylindrical (Medley et al., 1983) as it enables rotation in the sagittal plane 
only. The ankle joint, where the tibia, fibula and talus join, can be modelled as parts of 
parallel infinite circular rigid cylinders in the inner contact, coated with a thin deformable 
layer – articular cartilage of constant thickness h. Due to a high content of water and very low 
permeability of the cartilage matrix, articular cartilage may be considered incompressible and 
under small deformation for physiological short-term loading. However, under long-term 
loading, such as in long standing, fluid flow through the matrix pores should be taken into 
account and a biphasic model for cartilage would be adequate (Mow et al., 1980). After tens 
of minutes of creep, cartilage becomes consolidated. The equilibrium elastic moduli of the 
cartilage matrix in tension and compression differ considerably (Donzelli et al., 1999). As the 
matrix compression is predominantly perpendicular and the extension parallel to the articular 
surface, cartilage can be considered transversely isotropic. Garcia et al. (1998) have shown 
that if the fluid transport in the mixture does not occur or is not yet apparent (for example, at 
the moment of a step-load application or some tens of seconds after), the biphasic material is 
equivalent to a single-phase incompressible material. For zero equilibrium Poisson ratios 
(Donzelli et al., 1999), by using the formulas deduced by Garcia et al. and (1-2), it can be 
shown that the moduli  in (2) of the single-phase incompressible material equal, 
interestingly, the equilibrium Young moduli of the matrix. 
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In agreement with the matrix microstructure, the equilibrium moduli of the cartilage matrix 
are also depth-dependent. Due to the measurements by Schinagl et al. (1997) and Akizuki et 
al. (1986),  are taken in the form C( ), ( )rC r C rφ′ C′

 
Fig. 1 Contact problem 

 
Fig. 2 Normal contact stress distribution vs. circumferential co-ordinate s 
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The constants C , C  refer to the values at the articular surface, and C , C  to those at the 
cartilage-bone interface. As no measurement of variations of  with the depth seems 
available,  is assumed constant through the layer thickness. 

ar aφ br bφ

µ
µ

Now, the whole procedure can be carried on also for inhomogeneous moduli (27). Caution 
must be taken whenever integration over the layer thickness is taken. As a result, all equations 
remain the same if only  and (  are written instead of  and C , 

respectively. Thus, the constants  in the equations must be replaced by the averages of 
 through the layer thickness. 
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Take the following values for the parameters (Medley et al., 1983; Schinagl et al., 1997; 
Akizuki et al., 1986): , , , , 

, , , , . Here W has 
been estimated for the body weight of 800N, multiplied twice due to the muscle forces and 
calculated for one joint of the length of 28mm.  becomes 0.35m, averaged moduli 

, . Fig. 2 shows the variation of the contact radial stress, denoted by 

1.5mmh =

b 4.5MPaC φ =
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a 0.2MParC =

b 1.1MParC =

0.5MParC =

a 9MPaC φ =

6MPaCφ =

a /m

1rrσ  in this paper, calculated for the above parameters, as well as for W by one and two orders 
higher (thick lines). The last two high values are not encountered with the ankle joint. They 
are used to see the effect of the surface curvature. The thin lines represent the stresses for 
plane layers and the same  and axial load. The curves are calculated using (25-26), the last 
equation taken with W . It is apparent that the effect of surface curvature is small in the 
case of the ankle joint in standing (the thick line practically merge with the thin one: the 
maximum value is 1.89MPa vs. 1.83MPa and the contact half-width 13.3mm vs. 13.2mm). 
One half of the contact angle, 

eqR

n W=

φ , becomes 36.6, 64.9 and 114.4 degrees for the above three 
values of W and curved surfaces. For the highest value of W (with 114.4φ = degrees), the 
difference in the maximum contact stress for the curved and plane contacts is high (88.4MPa 
vs. 67.6MPa). 

 

 

4. Conclusion 
A contact of two coated parallel congruent rigid cylindrical surfaces has been tackled in the 
current paper. The coating is linearly elastic (transversely isotropic) and incompressible. 
Using an averaging procedure due to Matthewson (1981), analytical results have been 
obtained for the contact width and contact pressure distribution. 

The coating curvature effect becomes apparent as the angle of the contact increases. For 
the half contact angle of , the maximum contact pressure and contact width are 
considerably higher in the curved contact than in the plane contact and the same axial load. 
The results are also generalized for an inhomogeneous coating, i. e. if the moduli vary 
quadratically through the coating thickness. 
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An illustrative example of the human ankle joint loaded by the body weight indicates that 
the curvature effect is small in this case and the surface curvature need not be taken into 
account. The physiological load in standing is relatively low. In walking, running or jumping 
the maximum load is much higher. The maximum contact pressure would be also high, but 
not due to the curvature effect. In fact, the contact area is given by the tibial width (about 
30mm) and the contact angle remains relatively small. 

 

 

5. Acknowledgements 
This study has been sponsored by the Program of Basic Research No. K20776106 and by the 
grant No. 103/04/0150 of the Grant Agency of the Czech Republic. 

 

 

6. References 
Akizuki, S., Mow, V. C., Müller, F., Pita, J. C., Howell, D. S. & Manicourt, D. H. (1986) 

Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight 
bearing and fibrillation on the tensile modulus. Journal of Orthopedic Research, 4, pp.379-
392. 

Donzelli, P. S., Spilker, R. L., Ateshian, G. A. & Mow, V. C. (1999) Contact analysis of 
biphasic transversely isotropic cartilage layers and correlations with tissue failure. Journal 
of Biomechanics, 32, pp.1034-1047. 

Garcia, J. J., Altiero, N. J. & Haut, R. C. (1998) An approach for the stress analysis of 
transversely isotropic biphasic cartilage under impact load. ASME, Journal of 
Biomechanical Engineering, 120, pp.608-613. 

Matthewson, M. J. (1980) Axi-symmetric contact on thin compliant coatings. Journal of 
Mechanics and Physics of Solids, 29, pp.89-113. 

Medley, J. B., Dowson D. & Wright, V. (1983) Surface geometry of the human ankle joint. 
Engineering in Medicine, 12, pp.35-41. 

Meijers, P. (1968) The contact problem of a rigid cylinder on an elastic layer. Applied Science 
and Research, 18, pp.353-383. 

Mow, V. C., Kuei, S. C., Lai, W. M. & Armstrong, C. G. (1980) Biphasic creep and stress 
relaxation of articular cartilage: theory and experiment. ASME, Journal of Biomechanical 
Engineering, 102, pp.73-84. 

Pipkin, A. C. (1976) Constraints in linearly elastic materials. Journal of Elasticity, 6, pp.180-
193. 

Schinagl, R. M., Gurskis, D., Chen, A. C. & Sah, R. L. (1997) Depth-dependent confined 
compression modulus of full-thickness bovine articular cartilage. Journal of Orthopedic 
Research, 15, pp.499-506. 

 


