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Summary: The paper deals with an application of integral equations on a wake
flow. Two square cylinders oriented perpendicularly to flow direction are placed
on the bottom of an open channel. The results of integral method are compared
with LDA measurements and with Fluent k-ε simulation. Besides the averaged
results that offers Fluent simulation, the integral method can also simulate
dynamical properties of the flow.

1. Introduction
River engineering nowadays utilises numerous numerical models to estimate flow discharges
and water surfaces profiles in river systems like HEC-RAS. The computational procedures are
usually based on the solution of one-dimensional energy equation where the energy losses are
evaluated through friction coefficient. When the detail descriptions of flow around hydraulic
objects are needed, then it is necessary to utilise more sophisticated approach like CFD. In this
paper we have focused on a numerical simulation based on an application of integral
equations. The simulations are tested on a wake flow behind two square cylinders placed on
the bottom of the channel.

2. Wake-flow modelling
Wake flow is characterised by a very complicated time-dependent structure. The application of
complete differential equations of non-stationary flow field solved with help of an appropriate
mathematical model (finite volume or finite element methods, etc.) represents one of the
possible approaches how to model wake flow structure. However, this approach requires high-
efficient computer technique and the results obtained have hitherto strongly differed from the
experimental ones for high Reynolds numbers.

The second approach is based on the solution of the simplified equations describing a
flow field. It assumes that significant viscosity effects are restricted to a relatively narrow
region of a boundary layer in the close proximity of the walls. Boundary layer separation
profiles surfaces exhibiting discontinuous velocities in flow field. These surfaces are unstable,
deformable and are located in wake-flow region. A model using flow field discontinuities
usually corresponds to the reality the better the higher a Reynolds number is,
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(Batchelor, (1970),  Loicyanskii, (1970)).
Models of the potential flow with free surfaces of discontinuity are based on the second

Green Identity written in a special form

where  is an unambiguous function continuous up to second derivative inside a domain
 bounded by the surface  with external normal . A vector  connects a point inside the

domain with a point on the surface . Function  represents a velocity potential  in a flow
field.

The boundary can also be placed along both sides of free surfaces of discontinuity in the
flow field. An integral equation for a potential on the boundary  can be obtained by a suitable
arrangement of the second Green Identity under preservation of boundary conditions. In the
incompressible domain the solution can be simplified by neglecting the volume integral
containing divergence.

The integral equation for determination of the potential has been widely used solution of
numerous problems, (Hess & Smith, (1964), Argyris & Scharpf, (1970)), lately especially in a
variant of boundary elements. However in geometrically complicated 2D problems its
applicability is questionable with respect to the ambiguity of the potential in multiple
connected regions. In 3D problems the discontinuity of potential represents another source of
complications of the application of the numerical models. For determination of a motion of
free planes of discontinuity it is necessary to obtain velocity as a derivation of the potential.
To attenuate above mentioned problems it is suitable to transform the original equation to the
equation expressing velocity . In the incompressible domain it results in the following
equation

This relation forms a basis for the method presented in this paper. Using this relation it
makes possible to define more accurately also methods derived by other procedures like
superposition of flow, singularity methods, methods of discrete or continuously scattered
vortexes (Prandtl (1918), Lavrentev (1932), Belocerkovkij & Nist (1978)), which are, in
combination of boundary layer solutions, successfully applied to complicated technical
problems, Drela (1989), Bal (1999).

In this paper the integral equation in the vector form is used for modelling the wake
behind the obstacles under a water free surface. The obstacles have sharp edges this enables
sufficiently precise prediction of separation points without otherwise necessary detailed
solution of the boundary layer.

3. Mathematical 2D model of flow around obstacles
The flow patterns in a horizontal hydraulic flume of a rectangular cross section with prismatic
obstacles across the whole width of a channel can be simplified and modelled as 2D flow in a
vertical cross section. The initial equation has a similar form to a 3D flow but it is not
completely the same. The following relation fulfilled in an arbitrary point inside the region



The solution subjects on the boundary to the condition ,  where  denotes
a velocity component on the boundary in the normal direction (including possible mass
transport across the boundary).

Distribution of the potential , or the value , on the body surface can be
approximated by suitably chosen functions. The Hermite polynoms were used ensuring
continuity of the potential and its first derivation at the end points of the individual boundary
segments. If the boundary segment contains an internal point where a jump change of potential
occurs, the term  was replaced by  in the approximating polynom.

Boundary geometry was approximated in a similar manner. Hermite polynoms in complex
variable ensure continuity of a tangent of smooth boundary at the end points of the segments.
If the boundary contained angle points with jump change of normal direction the segment in
the vicinity of this point was obtained by the conformal mapping of the smooth segment. This
approach considerably eliminates a necessity of an abnormal shortening of the elements near
the edge that is otherwise necessary for precise description of sharp changes of the potential
near the edge.

If a sufficient number of control points, where the integral equation for potential gradient
and boundary conditions are satisfied, is chosen the method results in a solution of a system of
linear equations for unknown coefficients of Hermite polynomials approximating the solution.

In general there is a possibility to model the planes of discontinuity (vortex planes) in the
flow field by continuos functions, Hoření (1976). This procedure is applicable only for simple
geometries of vortex planes arising for example behind aircraft wings or for initial stage of an
development of breaking away vortex planes. For a general problem it is practically
impossible to create an algorithm solving in detail continuous vortex planes and their mutual
interaction as well as interaction with overflowed bodies in an acceptable computational time.
Therefore a function constant on the individual segments was applied to approximate the
potential on vortex planes in the wake. The velocity induced in a domain point by a closed
vortex line of intensity  satisfies the following relation (Loicyanskii (1970))

where  is an arbitrary open plane bounded by the vortex thread. This equation applied to the
approximation of the potential by the partially constant function leads to the mathematical
model where the vortex plane is substituted by a grid of discrete vortices. Such models
(derived from the idea of superposition of flow patterns without any relation to the distribution
of the potential on the vortex plane) are used for example in the aerodynamics of aircraft wing
for many years, Belocerkovkij (1965). A massive development of the computational
techniques have enabled in recent years a return to the methods of vortex grids at
quantitatively higher level. They are frequently presented as Discrete Vortex Method and they
use the Lagrangian framework to solve Euler and Navier-Stokes equations, Clarke & Tutty
(1994), Takeda et al.(1999).

The principal difference of modern methods of discrete vortices in comparison with
classical approach is an attempt to include into the solution not only convective vortex
movement but also a diffusive part of the Navier-Stokes equations which are usually used in
the form containing vorticity .  It can be derived the relation, Loicyanskii
(1970)

or in the Lagrangian form



In a plane flow the Lagrangian form is simplified due to the reciprocal perpendicularity of the
vectors  and  to the form

The well-known solution of this equation is a diffusion of the plane vortex in the course of
time. The result is a distribution of the tangential velocity component induced by a vortex of
circulation  in a dependence on radius  and time 

Classical vortex methods neglected the diffusion term, this corresponds to the limiting case
, or .

In this the paper described method uses the simplest model of the vortex planes. The
planes are substituted by a system of discrete vortices, which flow field changes from the
origin of the vortex as that isolated vortex. To verify the applicability of the presented simple
method (considering simplified interaction of vortices with opposite signs and the vortex with
boundary layer) an experiment was carried out and the results were compared also with the
differential method.

4. Flow in a vicinity of two square cylinders

4.1. Experimental arrangement
Experiments were performed in an open hydraulic flume of cross section 0.25 x 0.25 and
length 6 m. Bottom of the channel is covered by a brush paper, sidewalls are made from glass.
Two square cylinders of diameter 3 x 3 cm were placed on the bottom of the channel across
whole cross section of the channel. The space between the cylinders was three times the
cylinder height (9 cm), see. Fig. 2. The channel outlet was equipped with a weir to regulate a
water level. In these experiments the water depth was kept on a constant level 12 cm and the
flow discharge was 8.8 l/s. Cylinder Reynolds number based on the average velocity was
Re=8500.

The velocity filed was measured by means of LDA technique consisting of an Ar-ion
laser, two-component fiber optical system Dantec, photomultipliers operating in backscatter
mode and two BSA processors. Focal length of the transmitting lens was 310 mm. Since the
square cylinders were made from a non-transparent material the measurements near the solid
surfaces were limited. To partially improve the near wall measurements the measuring point
was shifted to the distance 8 cm from the sidewall. Besides the LDA measurements we also
performed a visualization with help of a digital video camera Panasonic DX1. Part of a video
sequence is shown in Fig. 1 with time step 80 ms between two successive pictures. The flow
direction is from the left to the right. In this sequence we can see that the flow is highly
unstable – a large vortex is formed in front of the second cylinder then it totally collapses and
a formation of a new vortex is starting.





Fig. 1 Visualisation of flow patterns. Time step is 80 ms.

4.2. Method of the integral equations
The flow is modelled in the domain schematically shown in Fig. 2. The free surface that
changed during the experiment negligibly was replaced by a wall with no friction. The origin
of the co-ordinates is located on the channel bottom at the upstream face of the first square
cylinder.

Fig. 2 Flow domain used for theoretical solution (dimensions are in meters)

The points of separation were located on the upper edges of both square cylinders. The
motion of vortex plane originated on the cylinder surfaces was integrated by the simple
method predictor-corrector of the second degree with a time step 2 ms. The flow patterns for
selected time periods are shown in Figs. 3-8. From Figs. 7 and 8 it is evident that the flow field
does not change in a monotonic way even after a long time.

Fig. 3 Flow field at the time 0.2 s (integral method)

Fig. 4 Flow field at the time 0.4 s (integral method)



Fig. 5 Flow field at the time 0.6 s (integral method)

Fig. 6 Flow field at the time 1.2 s (integral method)

Fig. 7 Flow field at the time 11 s (integral method)

Fig. 8 Flow field at the time 12 s (integral method)

4.3. Differential method
To compare the experimental and integral equations results it was performed also a solution of
the same geometrical arrangement with help of Fluent 6.0. In the flow domain (see Fig.2)
there was built a mesh grid of square elements (approximately 200000 elements). For
numerical simulation there was applied the k-ε turbulent model with enhance wall treatment.
On the upper wall no friction was assumed. The problem was solved as unsteady with time
step 0.1 ms in the initial stage, after stabilisation the step was prolonged up to 20 ms. The
results evidently converged to the case of stationary wake (i.e. to the time averaged values),
Fig.9. The solution stabilised after 5 seconds, the computation was stopped after 100 sec of



model time. The velocity changes in any point of the domain are described only through the
local turbulence characteristics. In Fig. 10 there are shown izolines of turbulent kinetic energy.

Fig. 9 Steady flow filed (Fluent solution)

Fig. 10 Kinetic turbulence energy  (Fluent solution).

5. Results
In Fig. 11 there are shown the time series of horizontal (vx) and vertical (vy) velocity
components in the location between the cylinders and in the distance 42 mm above the channel
bottom. The figures on the left side show results of the integral method, the figures on the
right side show the experimental data. The computed time series should in detail depend on a
degree of vortex fractionation in the wake. But as can be seen in Fig. 11 the computed time
series is not going to steady state but similarly as on the experiment non-regular disturbances
take place with repetition frequency of several hertz (groups of vortices are breaking away to
main stream). While the Fluent solution (standard k-e model) does not allow a dynamical
picture of the flow field, the integral method is partially able to give a better view, which is
comparable with experimental observation.

Comparison of averaged values from experiment, Fluent and integral equations method is
presented in Figs. 13 -15. In Figs. 13 and 14 there are plotted profiles of horizontal and
vertical velocity in the selected positions, respectively, in Fig. 15 there are shown profiles of
turbulent kinetic energy calculated according to the relation

where  and  are root mean squares of velocity fluctuations in horizontal and vertical
directions, respectively.

As can be seen in Figs. 13-15 Fluent results of velocity components and turbulent kinetic
energy follow experimental data very well. The integral method gives somewhat worse results
but still on an appropriate level. To improve the results of integral method mainly in the area



between the cylinders (x=75 mm) it will be necessary to apply more complex model of vortex
dissipation.

time [sec]

3 4 5 6

ve
lo

ci
ty

 v
x [

m
/s

]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

time [sec]

3 4 5 6

time [sec]

3 4 5 6

ve
lo

ci
ty

 v
y [

m
/s

]

-0.3

-0.2

-0.1

0.0

0.1

0.2

time [sec]

3 4 5 6

Integral equation

x=75 mm
y=42.5 mm

LDA x=75 mm
y=42 mm

Fig. 11 Time series of horizontal and vertical velocity components
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Fig.13 Profiles of horizontal velocity component
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Fig.14 Profiles of vertical velocity component
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Fig.15 Profiles of turbulent kinetic energy
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