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Abstract: The paper compares global and local approximation methods used for 
walking robot stability model. Global approximators are represented by 
feedforward multilayer neural network (FFNN) trained by gradient method; local 
approximators are represented by Locally Weighted Regression (LWR) and 
Receptive Field Weighted Regression (RFWR) methods. Global approximators try 
to learn global non-linear function which fits all the training data (minimizes 
training error), while local approximators use spatially limited data in query 
point neighborhood to generate appropriate response. Various aspects of used 
approximation methods are discussed (precision, robustness, computational and 
memory requirements). 

1. Introduction 
Our research activities are presently focused on modelling of quadruped walking robot. 

The properties of designed model has to be different according to different requirement posed 
on model. Paper [3] describes the design and characteristics of dynamic model of stability 
built in Matlab/Simulink/SimMechanics. 

There are two main reasons why it is not possible to use this model for real-time control 
of the robot: 

- long time of simulation (in seconds) on ordinary PC 
- the energy consumption - the control algorithm has to work on microcontroler (not on PC) 
 

The main goal is to build an approximation model which can be used instead of 
SimMechanics model. The complexity of algorithm should allow implementation on 
microcontroler with real-time speed of computation. 

2. Materials and methods 

2.1. Scheme of approximation model 

We consider the simple type of gait, often called static gait. Three legs are in contact 
with the ground permanently, fourth is changing its position. The scheme of model is shown 
on Fig. 1. 
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Fig. 1. Model scheme 
 

The positions of stable three legs and the vector of 
gravity (can have various direction with respect to local 
robot coordinate system) form the inputs into the model. Last 
input called "ID" describes the type of moving trajectory of 
leg selected from certain small set. 

During the first numerical experiments we used 
simplified schema of model. Motion in plain was considered 
only, fourth leg makes no movement. The reason was the 
size of state space of model shown on Fig. 1. In spite of such 
simplification, the model is better than the very simple one 
actually used in learning algorithms (triangle of stability).     

 

The extension of simplified model close to general one (Fig. 1) can be performed. When 
using neural networks the segmentation of the state space would be an answer, however, one 
would expect the local approximators to deal with the general model itself. 

2.2 Neural networks 
Traditional feed forward layered neural networks with single hidden layer were used. 

Training algorithms included well known Levenberg-Marquardt algorithm (LM) and Broyden, 
Fletcher, Goldfarb, and Shanno update (BFGS) as representatives of quasi-Newton algorithms 
and  Scale Conjugate gradient (SCG) algorithm as representative of conjugate gradient 
methods. We consider the methods generally well known, detailed information can be found 
in e.g. [2]. 

2.3 Locally weighted regression (LWR) 
LWR is simple approximation method with locally linear model, based on the least 

squares method, introduced in [1], which minimizes simple criterion 
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where n is input dimension, yi represents given output, ˆiy  is the fitted output. A linear model 
is defined as an equation with linear coefficients 1 2y p x p= + , where p1,p2 are unknown 
coefficients. For n given points we solve a system of n linear equations with two unknowns. 
In matrix form, linear models are given by the equation 

 =y Xβ  (2)
where y is the output matrix, X is the input matrix and β is matrix of unknown parameters. 
The equation can be solved as 
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In Locally weighted regression method, the prediction depends on distance between query 
point and given points in close neighborhood. Typical distance function is Euclidean distance 
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where q is the query point, xi is the ith component of vector x. A weighting function or kernel 
function K() is used to calculate a weight for each data point. Typical weighting function is a 
Gausian 
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where dE is the euclidean distance and D is a distance metric. Parameter D determines the 
width of the gausian kernel. 

The weight for each stored data point is  

 ( )( ),i iw K d= x q  (6)

The weights form a diagonal matrix W with diagonal elements Wii=wi. The weighted input Z 
is computed as Z = W X. Equation no.3 is solved for β using the new variable 
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The only open parameter in equation 5 is the distance metric D, which can be optimized by 
leave-one-out cross validation: for all data for i to n, temporarily exclude { },i ix y  from 

training data, compute LWR prediction ˆiy  and compute error ( )2
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algorithm is used with different distance metrics D and D with minimal error is chosen as 
optimal. 

2.4. Receptive Field Weighted Regression (RFWR) 
Receptive Field Weighted Regression algorithm (RFWR) automatically creates 

structures necessary for solving regression tasks. The algorithm approximates data using 
spatially limited linear models. The size and shape of receptive fields of particular linear 
models, as well as parameters of local linear models are adapted independently. The 
algorithm was first introduced in 1997 [4]. 

The goal of RFWR is to create a system of receptive fields for incremental function 
approximation. The prediction of output ŷ  for input x  is calculated as normalized weighted 
sum of particular receptive fields predictions ˆ ky : 
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Weight kw  corresponds to the activation of corresponding receptive field and is 
determined from the size and shape of receptive field, which is characterized by kernel 
function. In order to obtain smooth approximation the suitable kernel function must be 
smooth and symmetric, eg. Gaussian kernel: 
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which gives parameters of receptive field by its locating in space kc  and defining the size and 
shape of receptive field through positive definite distance matrix kD . This matrix is further 
represented by upper diagonal matrix kM . 

The relation between input and output data in each receptive field is given by simple 
parametric function. One possible way is the use of locally linear models: 
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The learning algorithm adapts the parameters of receptive fields ( kM , kc , kβ ) for each 

field independently. Receptive fields are added and pruned according the need, therefore the 
number of receptive fields corresponds with the problem to be solved. 

Learning algorithm therefore consists of three stages: 
1. adaptation of linear model parameters kβ  
2. adaptation of distance matrix kD  
3. adding and pruning of receptive fields 
 
Ad 1) 

Learning of linear model parameters β  is simple because the problem is linear. Using n pairs 
of training data (input 1 2( , ,..., )n=X x x x , corresponding output Y ) and weight matrix W  
with corresponding weights on main diagonal the parameter β  can be obtained by weighted 
regression: 
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To avoid explicit inversion of the matrix one can use recursive least square method. 
Adaptation rule for β  for given data element ( ),x y  is then: 
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This formula already contains the forgetting factor λ  necessary for sequential 
forgetting of the past data elements contributions, made when the distance matrix M  is not 
yet fully learned (change in matrix M  made during learning changes also the weight w ) 

Ad 2) 

The change of size and shape of receptive field is made via adaptation of distance matrix M , 
in particular through steepest descent algorithm used for error function J . 

1n n dJ
d

α+ = −M M
M

, where α  is learning parameter.    (12) 

Error function J  is obtained from weighted mean of square error: 
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where ˆiy  is predicted output, n  is number of receptive fields and 
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Error function defined this way leads to the overlearning problems. Therefore one can use 
leave-one-out cross validation and further introduce penalty term. Final form of the error 
function is then: 
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Ad 3) 

Newly created receptive field is added whenever given training pair ( ),x y  does not 
activate existing receptive fields for more than genw . The center of newly created receptive 
field is set equal to the input of the training fact =c x . Distance matrix M  is set into 
predefined value and other parameters are set to zero. 

The algorithm also contains pruning of excessive receptive fields. If certain receptive 
field overlaps another field (training fact activates two receptive fields more than prunew ) then 
receptive field with higher determinant of distance matrix D  is pruned. 

3. Numerical simulations 

3.1 Simulation details 
Neural networks were tested using Matlab implementation (Neural Network Toolbox). 

Above mentioned algorithms were used, with Levenberg Marquardt given the best 
compromise between computational and memory requirements versus training convergence 
speed and precision. Layered networks contained 4 - 30 neurons in hidden layer, networks 
with 8 and 22 hidden neurons were selected for further testing. Other training parameters 
were set as follows: 

transfer function – hidden layer hyperbolic tangent sigmoid 
transfer function – output layer linear 
training cycles 1000 
weights initialization random (-1, 1) 

Tab 1. NN parameters 

LWR algorithm was implemented in Matlab. The only parameter of the method to set is 
the kernel width D (eq. 5), which was set to 100. 

RFWR algorithm was implemented in Delphi 7 and initially tested on simple single 
variable function approximation task. Results were encouraging and algorithm was further 
used for the task at hand. The parameters of the RFWR algorithm were set as shown in Tab. 2: 

 



genw  = 0.1 

prunew  = 0.99 

initλ  = 0.999 

finalλ  = 0.9999 

deltaλ  = 0.99999 

initα  = 200 
γ  = 1e-10 

Tab.2. RFWR algorithm parameters 

3.2 Algorithms comparison 
Test results of the simulations for various approximators are shown in Figures 2. - 5. 

Data used for training were excluded from the training set, however, they also cover the 
complete input space differing in the grid resolution. 

    
 

Fig. 2. Results for NN 6-8-1    Fig. 3. Results for NN 6-22-1 
 

    
 

Fig. 4. Results for LWR    Fig. 5. Results for RFWR 
 

The comparison of methods errors and computational requirements is shown in Tab. 3. 
MSE stands for Mean Square Error, Max E stands for Maximum error, Don’t know responses 
is the number of responses when approximator couldn’t give an answer, Training time gives 
the total time required for training, Total parameters is the total value of adjustable 



parameters of given approximator (this value influences total memory requirements), 
Response parameters is the number of parameters used when response for single input fact is 
calculated. 

 
Approximator NN 6-8-1 NN 6-22-1 LWR RFWR 
MSE 580 x 10-6 130 x 10-6 819 x 10-6 1.02 x 10-3

Max E [N] 18.49 12.56 48.76 36.01
Don’t know 
responses 

- - 95
(0.35 % cases)

47 
(0.20 % cases)

Training time 
[h:min] 

2:00 7:10 4:03 3:11

Total parameters 65 177 189000 56784
Response 
parameters 

65 177 variable variable

Tab. 3. Algorithm comparison 

As we can see, the error on test data is higher for LWR and significantly higher for 
RFWR than test error produced by neural network approximator. Learning speed is about the 
same, however the memory requirements are higher, even for larger neural networks. LWR 
algorithm must store all the data points in memory (27000 input vectors). RFWR algorithm 
generated 728 receptive fields which gives number of parameters 56784 (each receptive field 
has at least center matrix – 6 parameters and D and P matrices of 6x6). Neural networks must 
store only synaptic weights (total number of parameters depend on number of hidden 
neurons), e.g. network 6-8-1 has 65 parameters only. During the query response the situation 
is different for global and local approximators. Neural network must use all its parameters, 
while local approximators use only the neighborhood points in LWR case and activated 
receptive fields in RFWR case. 

4. Conclusions 
LWR algorithm main advantage is its extremely simple implementation. Algorithm is 

also very fast, the only training it requires is finding the optimal kernel width. The main 
drawback is the memory requirement – the algorithm requires keeping all the data points in 
memory. Unfortunately this makes the algorithm unusable for large data sets. 

First advantage of RFWR algorithm over neural network approach is clear: the RFWR 
approximator can give “don’t know” result. When number of receptive fields activated for 
given test input is zero the system returns corresponding flag. This is contrary to neural 
networks which gives some output for arbitrary input. LWR algorithm can produce the “don’t 
know” answer as well, when close neighborhood doesn’t contain sufficient information 
(number of close data points). 

Furthermore, RFWR algorithm is in principle very robust against partial overtraining 
(as any other local approximator). That means that if new training data are presented to the 
RFWR after end of the training, it simply learns new data and already trained data remains 
intact. This is again contrary to neural network when further training on new data can 
destabilize learned global function. LWR algorithm can not be overtrained in principle. 



However, looking at the data on this concrete application one can see that neural 
networks beat local approximators in almost all aspects. High error values on test data could 
be probably improved with better settings of RFWR learning parameters, this work is 
currently in progress. LWR results can hardly be improved – distant function change nor 
kernel function change will improve the overall results significantly. Advantages of the local 
approximators mentioned above are according to us of high value and the algorithms (mainly 
RFWR and its successors) is worth of further exploration, but currently the neural network is 
the best answer for given task. 
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