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Summary: The behaviour of components with input quantities showing random 
variations can be studied using the Monte Carlo method together with the 
Response Surface method. Both methods can also be used in searching for the 
optimum design parameters, preferably with low sensitivity to the input scatter. 
The paper explains effective ways for the construction of the response surface, 
among others the use of dimensional analysis and similarity theory. The use of 
both methods (MC + RSM) is illustrated on an example of dimensioning of an 
elastic-plastic beam subjected to impact by a moving body. 

 
 
1.  Introduction 

A reliable structure is such which keeps the output parameters (deformations, dynamic or 
kinematic characteristics, etc.) in the allowable limits. If the input quantities (load, geometry, 
material properties, etc.) vary or can deviate from nominal values, it is also necessary to 
analyse the corresponding variability of the response. If these deviations have random 
character, this analysis can be done using the simulation Monte Carlo method: the response is 
calculated many times for randomly generated input values, and the results form a histogram, 
which informs about the probability distribution. If the calculation of response is time 
consuming (made, e.g., by the finite element method), it is reasonable to use the Response 
Surface Method: the detailed analysis is done only for selected combinations of input 
parameters, and the results are fitted by a suitable regression function (response surface). The 
Monte Carlo simulations are then carried out only with this simple analytical function. The 
response surface also enables one to find such design point (i.e. the nominal values of input 
quantities), for which the response is only little sensitive to their variability (so-called robust 
design, Fig. 1). Having known the allowable limit values of the output parameters, one can 
also set the tolerances of input quantities. The paper gives instructions for the construction of 
response surface. It also shows how to reduce the extent of the necessary computer modeling 
by using the theory of similarity and dimensional analysis. The use of the described methods 
is explained on an example of dimensioning of a beam subjected to impact. 
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Fig. 1 Principle of robust design. 

 
2.  Response surface method 

The relationship between the output quantity y and input variables can be expressed generally 
as y = f(x1, x2, ... xi, … xn). The response is calculated for selected combinations of input 
quantities, and the results are fitted by a regression function, usually a polynomial 

     y   =   a0  +  ∑ aixi  +  ∑ bixi
2  + ...  +  ∑ dijxixj  + ...   ( 1 ) 

This approximation is suitable if the actual relationship between input and output has such 
character, or if the output quantity changes in the considered interval only little. If it differs 
significantly from a polynomial (e.g. y ∼ 1/x3 or y ∼ x1/2), Equation (1) cannot give a good 
approximation in a wider interval. There are several ways for improvement, the starting point 
being a visual judgement of the character of response. With several input quantities, this 
information can be obtained by creating several regression functions, each with only one or 
two input quantities as independent variable (= „cuts“ through the response surface), Fig. 2. 

Linear or polynomial function can also be used for the approximation of other 
relationships if suitable transformations are made. For example, the relationship y = a/x3 can  

 
Fig. 2 Response surface (a schematic) 



be expressed as y = az by introducing new variable z = 1/x3; the relationship y = ax1/x2
2 can be 

converted to multiple linear regression Y = A0 + A1X1 + A2X2 by logarithmic transformation, 
etc. Tools like Solver enable the determination of regression coefficients in complicated 
functions by direct application of the least squares method, without transformations. 

The fit of a response function to the real data can sometimes be improved by dividing the 
definition interval of some quantities into sub-intervals and using different regression 
functions for each of them. This is sometimes substantiated by the physical character of the 
problem; for example, the elastoplastic deflection obeys another law than elastic one.  
 
 
3.  Use of dimensional analysis and theory of similarity 

The form of response function should correspond to the physical character of the problem. 
When looking for such function, it is reasonable to utilise the known analytical solutions of 
similar problems. Useful also is dimensional analysis (Kožešník, 1983), which can help one to 
find a proper form of the response function and to reduce the amount of computer work. 

For example, let us look for the expression for critical load Fcr for buckling of a 
compressed column.  Assume that we do not know how this load depends on its length L. In 
buckling, the beam deflects. Thus, we can deduct that the critical force will be directly 
proportional to its bending stiffness EJ (E is elastic modulus and J the moment of inertia of 
the cross section), so that the general form of the formula will be 

    Fcr = k E J Ls    ;     ( 2 ) 

k is a constant to be found (for the given fixing of ends) by experiment or computer modeling. 
After replacing individual quantities by their units, one obtains [N] = [1]×[Nm-2]×[m]4×[m]s, 
which gives s = – 2  (corresponding to the known solution Fcr = kEJ/L2).  

The use of dimensional analysis in computer modeling is useful in another respect also. 
Every physical equation can be expressed by means of nondimensional parameters, whose 
number is usually lower than the number of original variables. If n is the number of variables, 
and r is the number of basic dimensions necessary to express them, the pertinent equation can 
be written as a relationship of  (n - r)  nondimensional parameters. The reduction of variables 
also means the reduction of computer work necessary for obtaining the data for the response 
surface. The number of points needed  is generally 
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where m is the number of factors and ui is the number of levels for i-th factor. For example, 
the response „surface“ for four factors, each on three levels, needs 34 = 81 points. Reduction 
of the variables from 4 to 3 would mean the reduction of points to 33 = 27, i.e. to one third! 
For example, Eq. (2) can be rewritten as 

    Fcr L
2 / (EJ) = k   ,     ( 4 ) 

so that even only one „experiment“ is necessary for obtaining the unknown constant k ! 

There is one more important advantage of using the theory of similarity and formulating 
the problem in terms of dimensionless quantities: the solution is valid not only for the 
particular case, but for the whole class of similar objects !  



Some dimensionless arguments can be created as the ratios of quantities with the same 
dimension; e.g. the ratio of deflection of a beam to its length, the height of the cross section to 
the length, stress to elastic modulus, etc. For example, the dimensionless expression for 
maximum stress σ in a plate with characteristic lengths a, b, c and thickness t, loaded by 
pressure p (Nm-2) can be written as 

      σ / p  =  f [ (a/t}2, (b/a), (c/a), µ ] ,   ( 5 ) 

where µ is Poisson’s ratio (also dimensionless), and f[...] is some function to be determined. If 
plastic deformations are expected, one more argument, e.g. the ratio of yield stress and elastic 
modulus must enter the equation. If the compressed column from the above example had two 
parts with different cross sections, the expression (4) should be extended by two 
dimensionless arguments J1/J a L1/L, where J1 a L1 are the moment of inertia and length of the 
part with different cross section. Nondimensional quantities can also be formed as the ratio  

  X  =  x / xchar      ,    or    X  =  (x – xmin) / (xmax – xmin)  ( 6 ) 

where xchar is a characteristic value of x, and xmin and xmax are the minimum and maximum (or 
starting and final) values. 

After having found the response surface, we return (in the Monte Carlo simulations) back 
to the original (dimensional) expressions like Eq. (2), and assign random values to all 
individual variables (for example a and b instead of b/a). An example is is given below. 
 

4.  Sensitivity analysis and determination of tolerances of input quantities 

The design point with low sensitivity to the variations of input quantities can be found using 
the analytical form of the response surface, or various optimisation methods. Effective is the 
so-called simplex method, which approaches to the optimum continuously according to a very 
simple algorithm. A fictitious body with n + 1 vortices (a simplex)  is created, the number of 
vortices being by one higher than the number of input variables (e.g. a triangle for two 
independent variables, and a tetrahedron for three variables). The coordinates of the vortices 
correspond to the values of input parameters. For all these points, the output quantity of 
interest is calculated.The individual values are compared. In the next step, the new simplex is 
created by replacing the vortex with the worst value of the dependent quantity by a new one, 
whose coordinates are mirror-symmetrical. For this new point, the dependent variable is 
calculated. Now, in the new simplex (consisting of the new vortex and all vortices from the 
previous simplex except the worst one), the values of the dependent variable for all vortices 
are compared, and again the worst vortex is omitted and the new one is created in the same 
manner. In this manner we proceed until the quantity of interest attains the extreme or 
acceptable value. More details can be found, e.g.,  in (Tichomirov, 1974). 

After having found the position of the design point, the sensitivity of the output to the 
variations of input quantities should be analysed, in order to find the quantities which 
contribute most to the output variation, and to set them appropriate tolerances. Various 
methods and formulae for sensitivity analysis using analytical and simulation methods were 
described in detail in (Menčík, 2000),  together with the procedures for setting the tolerances 
of input quantities. 

 

 



5.  Practical example 

The use of the Monte Carlo method in combination with the response function will be 
illustrated on an example of a simply supported beam hit in the middle by a moving rigid 
body (Fig. 3). The beam should absorb the energy of impact. Plastic deformations are 
allowed, but only such that no plastic collapse occurs, and the permanent deflection does not 
exceed a permitted value. The mass and velocity of the moving body, and the dimensions and 
yield strength of the beam are random quantities. Thus, also the resultant load and bending 
moment and residual deformation are random variables. The task is to find the cross-section 
dimensions of the beam such that the probability of exceeding the allowed limit values is low. 

Theory    

The moving body deflects the beam, and its kinetic energy U = mv2/2 changes into the energy 
of elastic strains and the work of plastic deformations (m is the mass of the body and v is its 
velocity). The maximum force F acting on the beam is determined from the energy via the 
F(y), U(F) and F(U) relationships; y is the deflection. These calculations depend on whether 
the deformations are elastic or elastoplastic. The permanent deflection after unloading is 
calculated as the difference between the total elastoplastic deflection and the elastic deflection 
caused by the same force. The beam material is assumed ideally elastic-plastic without strain 
hardening (Fig. 3), the cross section is rectangular, of width w and height h. 

Remark. The weight of the body can play a role if potential energy is released by its 
movement in the gravitational field during the beam deflection. For simplicity, these effects 
are not considered here (movement in horizontal direction).  

The elastic deflection is  y = FL3/(48EJ). E is elastic modulus, L is the beam span, and J = 
wh3/12 is the moment of inertia of the cross section. The maximum stress σ = M/Z, where M = 
FL/4 is the maximum bending moment and Z = wh2/6 is the section modulus. The beam 
deforms elastically until the maximum stress reaches the yield strength σy of the material. The 
corresponding force and deflection are 
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For higher loads, the maximum stress remains constant (no strain hardening), while the 
plastically deformed region grows. At the ultimate load (Fu  = 1.5 Fy), the whole cross-section 
in the middle of the beam is plastified (a plastic hinge). Higher force would cause a collapse. 

 

 

          Fig. 3  Elastoplastic beam under impact 



The pertinent theory for the elastoplastic deflections can be found in (Šmiřák et al., 
1966), so that only the main results will be presented here. In order to get general formulae, 
we introduce relative (nondimensional) quantities 

         F*  =  F / Fy       ,     y*  =  y / yy    .   ( 8 )  

The relative elastic deflection (for 0 ≤ F* ≤ 1) can be expressed as  

             y*  =  F* ,     ( 9 ) 

while the elastoplastic deflection (for 1 ≤ F* ≤ 1.5) depends on F* as (Fig. 4)  

           y*  =  [5 - 31/2(3 + F*)(1 - 2F*/3)1/2] / F*2       .  ( 10 ) 

The accumulated (and dissipated) energy U can be obtained by integration of the F(y) 
relationship. For elastoplastic deformations, the integration must be performed numerically. 
For universality, nondimensional energy U* is introduced, defined as the ratio of the 
deformation work corresponding to the force F and that corresponding to Fy : 

      U*  =  U / Uy  =  ∫Fdy / Uy  =  ∫FyF
* yydy* / (Fyyy/2)  =  2 ∫ F*dy*   . ( 11 ) 

(The relative energy could also be defined as U** = ∫F*dy*. In this case, the relative energy at 
the elastic-plastic transition would be U** = 1/2, while U*(Fyyy) = 1. The difference between 
both definitions is only formal.) 

Having found the U*(F*) values, the force can be determined from energy. For elastic 
deformations (0 ≤ F* ≤ 1, or 0 ≤ U* ≤ 1), the relationship 

            F* = √ U*      ( 12 ) 

is exact. For the elastoplastic range (1 ≤ F* ≤ 1.5, or (1 ≤ U* ≤ 4.333), a suitable expression 
can be obtained by fitting the F* values calculated for several values of U* by a regression 
function (= Response Surface). A relatively good approximation (coefficient of determination 
R2 = 0.9997) is  

  F*  =  0,3308 + 0,8806U* - 0,2278U* 2 + 0,0201U* 3     .  ( 13 ) 

The relative residual deflection for 1 ≤ U* ≤ 4.333, can be expressed (R2 =  0,99996) as 

   yres
*  =  0.1467 - 0.2847U* + 0.1508U*2 - 0.0126U*3 . ( 14 ) 

   

Fig. 4  Deflection y* of the elastoplastic beam as a function of (normalised) load F*. 



In the Monte Carlo procedure, random numbers are assigned to the dimensions, yield 
strength of the beam, and the mass and velocity of the moving body. Then, the corresponding 
values Fy, yy are calculated, as well as the energy U of impact and the characteristic value Uy 
= Fy yy /2. Then, the relative energy U* is determined. If U* ≤ 1, the deformations are only 
elastic. If U* > 1, the corresponding force F* and relative residual deflection yres

* are 
calculated from Eqs. (13) and (14). 

Two limit states are considered: unacceptable permanent deflection after the impact, and 
creation of plastic hinge. The permanent deflection should not exceed some value δ. Thus, 
each relative value yres

* obtained in M.C. trials from (8) must be converted into absolute value 
yres = yy × yres

*, which is then compared with δ. The probability of failure is determined as the 
ratio of the number of cases where yres has exceeded δ, and the number of all MC trials. The 
plastic hinge arises when bending moment attains the ultimate value Mu. For higher safety, 
however, the limit state is defined here as some fraction of Mu. As the bending moment is 
directly proportional to the forces F and F*, it is sufficient to compare the calculated value F* 
with some number k (< 1.5). As F* is related to the relative energy U*, it is also possible to 
check this limit state by comparing the calculated U* value with the value K = U*(F* = k).  

Numerical input values and results 

The parameters of input variables (distribution, mean, standard deviation) are: m (normal, 500 
kg, 50 kg), v (normal, 1.0 m.s-1, 0.1 m.s-1), w (normal, 50 mm, 0.3 mm), L (constant, 2000 
mm), E (constant, 210 000 Mpa), fy (steel S 235, the histogram in Guštar & Marek, 2001). 
The quantity to be found is the beam height h in the force direction; it can be chosen from the 
series of nominal values 100 - 110 - 120 ... mm (normal dist. with standard deviation 0.5 
mm). The allowable permanent deflection after the impact is δ = 1 mm, with permitted 
probability of exceeding Pf1,a = 0.001. The allowable maximum force is 0.9Fu (corresponding 
to k = 0.9×1.5 = 1.35 and K = 2.042) with the permitted probability of exceeding Pf2,a = 0.001.   

The simulations were performed using the Ant-Hill program (Guštar & Marek, 2001), 
Fig. 5. The starting beam thickness was 100 mm, and was gradually increased with respect to 
the results of simulations. For each height, 100,000 trials were made. The standard normal 
variable u, used in generating the quantities m, v, b, h, was bounded by the interval u = ± 3,5.  

 

Fig. 5   Screen of  the Ant-Hill program for Monte Carlo simulations 



Table 1.   Results of the Monte Carlo analysis of elastoplastic beam under impact 
 

h (mm) Pf1(yres>1mm) yres, max (mm) Pf2(U*>2.042) U* max 

100 0.02557 5.155 0.0591 4.501 
110 0.00813 2.792 0.0301 3.404 
120 0.00224 2.291 0.0152 3.289 
130 0.00061 2.158 0.0073 3.382 
140 0.00006 1.265 0.0033 2.797 
150 0.00001 0.926 0.0022 2.631 
160 0.00001 1.140 0.0006 2.865 

The main results are shown in Table 1. Umax
* and yres, max are the maximum values obtained 

(U* = 4.333 corresponds to the plastic hinge). The condition of acceptable permanent 
deformation Pf1(yres>1mm) < 0.001 was fulfilled for h = 130 mm, but with the maximum 
value in the 100,000 trials  yres, max = 2.16 mm and unacceptably high probability of exceeding 
0.9Mu (or U* = 2.042). The condition P(U*>2.042) ≤ 0.001 is fulfilled only for h ≥ 160 mm. 
Thus, the beam height satisfying all conditions is h = 160 mm. 

The table shows how the beam height is related to the probability of exceeding individual 
limit states, and also shows the expectable maximum values, which can be used for assessing 
the consequences. As the size of the cross section is related to the costs, it is possible to find 
in this way the optimum size (sometimes also the reasonable limit values and the allowable 
probabilities of their exceeding) which guarantee the minimum costs for the structure 
including those following from exceeding the limit states. 
 

6.  Conclusion 

The behaviour of components with input quantities of random character can be studied using 
the Monte Carlo method together with the Response Surface method. Both methods can also 
be used in searching for the design parameters with low sensitivity to the input scatter. The 
paper has explained methods for the construction of response surface, among others the use of 
dimensional analysis and similarity theory. The use of the Monte Carlo and Response Surface 
methods was illustrated on an example of dimensioning of an elastic-plastic beam subjected 
to impact by a moving body. 
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