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Summary: The task of planning trajectories plays an important role in 
transportation, robotics, etc. In robot motion planning the robot should pass 
around the obstacles, from a given starting position to a given target position, 
touching none of them, i.e. the goal is to find a collision-free path from the 
starting to the target position. This task has many specific formulations depending 
on the shape of obstacles, allowable directions of movements, knowledge of the 
scene, etc. Research on path planning has yielded many fundamentally different 
approaches to its solution, e.g. visibility graph method or the shortest path map 
method. Assuming movements only in a restricted number of directions (eight 
directional, horizontal/vertical) the task, with respect to its combinatorial nature, 
must be solved by heuristic techniques. We propose an application of the Voronoi 
diagrams to the studied tasks and show that this approach needs only polynomial 
time and choosing Euclidean or rectilinear metric it can be adapted to tasks with 
general or directional-constrained movements. 

 
 
1. Introduction 
The task of planning trajectories of a mobile robot, has received considerable attention in the 
research literature (de Berg et al., 2000), (Sugihara & Smith, 1999), (Zilouchian & Jamshidi, 
2001). This task can be formulated in many ways depending on various conditions, e.g. on the 
fact whether the terrain contains obstacles, which shape they have, or whether the obstacles 
are movable. Further constraints may represent knowledge of the scene (complete or partial), 
the metric under consideration and so on. In this paper, we concentrate on a special case of 
motion planning in the 2D completely known scene with static point and polygonal obstacles 
that can be composed from rectangular parts and where possible movements of a robot are 
reduced only to horizontal, vertical and diagonal directions. This problem is usually solved by 
heuristics applied to a grid representation of the plane e.g. (Sugihara & Smith, 1999) and can 
include a case-based reasoning procedure (Kruusmaa & Svensson 1998a,b), (Šeda & Dvořák, 
2003). Unfortunately the cardinality of the search space of possible paths in the grid has 
exponential dependence on the granularity of the plane.  

Therefore we propose an entirely different approach based on an application of a 
rectilinear Voronoi diagram using only steps of polynomial time complexity and avoiding all 
the other drawbacks of the previous approach. In contrast to (Guha & Suzuki, 1997), we will 
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start with the classical Voronoi diagram in the Euclidean plane and later adapt it to the 
rectilinear case and define a way of replacing its diagonal segments to apply it also to 
constructing a horizontal/vertical trajectory between the starting and target position. 

 
 

2. Path planning using Voronoi diagrams 
Voronoi diagrams are among the most fundamental data structures in computational 
geometry. These geometric structures were first discussed by Peter Lejeune Dirichlet (1805-
1859) in 1850. However, they were given their name by Georgy Fedoseevich Voronoi (1868-
1908), a Russian mathematician, who wrote a fundamental paper about them in 1908. 
Voronoi diagrams have a surprising variety of uses, e.g. nearest neighbour search, facility 
location, path planning, etc. In this paper, we investigate their possible use in point-to-point 
motion planning and propose a method for solving this problem on the Euclidean or 
rectilinear plane. 

A Voronoi diagram of a set of sites in the plane is a collection of regions that divide up 
the plane. Each region corresponds to one of the sites and all the points in one region are 
closer to the site representing the region than to the other site.  

When Voronoi diagrams are non degenerate (no four or more of its Voronoi edges have a 
common endpoint) then the following properties are satisfied (Aurenhammer, 1991), (de Berg 
et al., 2000): 

• Every vertex of a Voronoi diagram V(P) is a common intersection of exactly three 
edges of the diagram. 

• The bisector between points pi and pj defines an edge of V(P) if and only if there is a 
point q such that CP(q) contains both pi and pj on its boundary but no other point. 

• Voronoi diagram V(P) of P is planar. 
• The number of vertices in the Voronoi diagram of a set of n point sites in the plane is 

at most 2n−5 and the number of edges is at most 3n−6. 
 
 
2.1. Algorithms for constructing Voronoi diagrams 
Fundamental algorithms for constructing Voronoi diagrams are the incremental algorithm, 
random incremental algorithm, divide and conquer algorithm and plane sweep algorithm (or 
Fortune’s algorithm). More details can be found e.g. in (Aurenhammer, 1991), (de Berg et 
al., 2000), (Fortune, 1992) and (Shamos & Hoey, 1975). The time complexity of the 
incremental algorithm is O(n2) in the worst case, and O(n log n) for the other three algorithms. 
We will briefly describe the first two of them. 

The incremental algorithm inserts the points one at a time into the diagram. First, we need 
to find the current Voronoi region into which the new point p falls. Let q be the point defining 
this region; the separator of p and q then will contribute an edge, e, to p’s region. Second, we 
need to "walk around" the boundary of the new point's Voronoi region. This boundary is 
created edge by edge, starting with e. Finally, we delete all the old edges sticking into the new 
region.  

The second and third steps are more time consuming. It is possible that each new point's 
Voronoi region will touch all the old regions. Thus, in the worst case, we end up spending 
linear time on each region, or O(n2) time overall.  



One approach to speeding up the insertion is its randomisation. It has been proven that 
inserting the points in random order yields an O(n log n)-time performance with high 
probability, regardless of which set of points is given.  
 
 
2.2. Motion planning in the scene with point obstacles 
Consider a disc-shaped robot in the plane. It should pass among a set P of point obstacles, 
getting from a given starting position to a given target position and touching none of the 
obstacles. If such a passage is possible at all, the robot always walks along the edges of the 
Voronoi diagram of P, which define the possible channels that maximise the distance to the 
obstacles, except for the initial and final segments of the tour. This allows us to reduce the 
robot motion problem to a graph search problem: we define a subgraph of the Voronoi 
diagram consisting of the edges that are passable for the robot. However, in Fig. 1 some of the 
edges of the Voronoi diagram are not passable and therefore these edges must be omitted 
from the diagram. If the graph after this reduction is still connected, we can use the previous 
approach again. In the case when initial and final segments are connected to different 
components of the graph, then the path among the obstacles does not exist. 
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Fig. 1.  Motion planning using Voronoi diagrams with impassable edges 
 
 

The lengths of paths along the edges of the diagram are given by the sums of the edge 
lengths computed as Euclidean distances of the corresponding pairs of vertices. The shortest 
path can be easily solved by the Dijkstra algorithm. Using a binary heap implementation, its 
time complexity is given by O(|E| log |V|), where E is a set of edges and V is a set of vertices. 
Note that the number of vertices in the Voronoi diagram of a set of n point sites in the plane is 
at most 2n−5 and the number of edges is at most 3n−6 (de Berg et al., 2000), i.e. both are 
bounded by O(n). 
 
 
2.3. Motion planning in eight directions 
Let us assume that we wish to plan motion planning constrained by movements in eight 
directions. If we use the rectilinear metric for the Voronoi diagram then due to the 



rectilinearity, each straight-line segment of a bisector in rectilinear Voronoi diagrams will be 
either horizontal, vertical, or inclined at 45° or 135° to the positive direction of the x-axis. 

This finding straightforwardly offers to use the rectilinear Voronoi diagram for the 8-
directional motion planning. The rectilinear Voronoi diagram can be constructed by a simple 
modification of the random incremental algorithm for the Euclidean metric. 

 
  

2.4. Motion planning in the plane with point and rectangular obstacles 
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Fig. 2. Scene with point and rectangular obstacles 

 
 
Now consider a more general case of a scene where, besides point obstacles, rectangular 
obstacles occur. Fig. 2 shows such a scene with the rectilinear Voronoi diagram constructed 
for point obstacles only. After the construction of the rectilinear Voronoi diagram for point 
obstacles, we increase the width and height of the rectangular obstacles by the diameter of the 
disc-shaped robot and a certain small number representing a reserve for finding a collision-
free path. For the optimal path between the starting and target position, we search in the graph 
whose edges create the edges of the “extended” rectangular obstacles and edges of the 
rectilinear Voronoi diagram without their parts inside the extended obstacles. This is 
demonstrated in Fig. 3.  The example shown in Fig. 2 and Fig. 3 demonstrates the case of the 
8-directional movements. It is obvious that this approach can also be applied for general 
motion planning using Euclidean version of the Voronoi diagram. 
 
 
3. Conclusions and future work 
In this paper, we proposed applications of the Voronoi diagrams to general and 8-directional 
motion planning. As algorithms for constructing the Voronoi diagrams run in polynomial 
time, the number of their edges is linearly dependent on the number of obstacles, algorithms 
for searching the shortest paths in graphs are also polynomial, and this holds for all additional 



operations for finding a collision-free path of a robot (replacements, extensions of the 
rectangular obstacles), the overall time complexity of all proposed algorithms is polynomial. 
This approach avoids all the drawbacks of classical methods (combinatorial explosion, low 
boundaries for grid representation and generating many infeasible solutions). 

In future, we will try to generalize this approach for cases of more complex shapes of 
obstacles and movable obstacles. Further investigating will also include the case when the 
environment is totally or partially unknown, varying over time or a combination of both. 
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Fig. 3. Motion planning in 8 directions in a scene with point and rectangular obstacles 
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