
 
 
 
 

 

ABOUT STABILITY AN AEROELASTIC SYSTEM 
 

I. Zolotarev* 

Summery: Natural frequencies and the thresholds for loosing the stability of 
thin-walled cylindrical shell conveying by flowing fluid are theoretically studied. 
Potential flow theory for fluid and semi-membrane (half bending) theory of shells 
are used. The shells of finite length are considered for different cases of boundary 
conditions at the edges of the shell. Arising of the aerodynamic damping in the 
studied aeroelastic system due to the flowing fluid, and properties of adjoint 
solution (i.e. the solution corresponded to the opposite orientation of the 
boundary conditions of the cylinder) are showed. Obtained values of the 
derivatives of aerodynamic damping (over flow velocity U) in some analytical 
form are compared with numerical results published before within the used semi-
membrane theory of shells and within the 3D shell theory.    

    

1. Semi-membrane (half bending) theory of shells 

Semi-membrane (half bending) theory of shells is a simpler theory for vibration of the thin 
shells ([11], [12], [14], [15]) and it may be used in many technical applications enabling more 
lucid solution of the coupled shell-fluid problems. Equation of motion for the cylindrical shell 
may be written as  
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where h, R, L, , E and are the thickness, radius, length, density, Young’s modulus and 
Poisson’s ratio of the shell;   is the external static pressure causing a static pre-stress of  the 
shell;  is the radial displacement of the middle surface of the shell,  and   is the 
perturbation pressure exerted by the internal flows on the shell and t is time; θ  and  s are 
dimensionless cylindrical coordinates: ,  .  
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This equation of motion can be used for studying the lowest natural frequencies of thin 
cylindrical shells of medium length  L, when the radial motion of the shell  is predominant and 
the modes of vibration are associated with higher circumferential wavenumbers, n  (see, 
for example, Zolotarev & Popov [18]). 
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Two conditions on each edge (s = 0 and s = L) of the shell must be satisfied: 
 
a) for clamped edge  
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b) for simply supported edge  
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c) for free edge 
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2. Equations for potential flow of ideal uncompressible fluid 

On the right-hand side of Eq. (1) is the unsteady (perturbation) pressure  originated 
from the flowing fluid with the density , mean flow velocity U and speed of sound . The 
pressure is determined by solving the equations for the potential flow of an ideal, generally 
compressible fluid [17,19]: 
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with the impermeability condition on the vibrating surface of the shell 
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where the following dimensionless quantities were introduced:  
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3. Method of solution  

The solution of the Eq. (1) for the radial displacement w of the cylindrical shell is assumed as: 

                                         ,                              (8) (ei s nΘw W τ αΩ − −= )

where /sRω ρΩ = E   is the dimensionless frequency of the disturbance;  α   is the axial 
wave number and  n  is the circumferential wave number. 



From the potential flow theory for inviscid incompressible fluid [15] the perturbation 
pressure  can be written as p
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where  is the Bessel function in usual notation and nI '
n nI dI d ξ= .  

Assuming long waves in the axial direction and using the approximation of the Bessel 
functions for small argument [38] we can write 
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Substituting Eqs. (8), (9) and (10) into Eq. (1) will yield a characteristic equation as the 
algebraic equation for the axial wave number : α
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For a given n the solution of the Eq. (11) is assumed as a linear combination of four waves 
propagating in the longitudinal direction: 

        w n ,       (12) 
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where the coefficients W  must be chosen so that they satisfy two boundary conditions at 
each edge (s = 0 and s = L) of the shell and the wave numbers , (j = 1,…,4)  are given by 
the roots of the Eq. (11). 
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The wave numbers  must satisfy, for example, next boundary conditions: jα

 
a) for the supported (s = 0) - supported (s = L) edges 

,

eeee
eeee

iLiLiLiL

iLiLiLiL 0

1111

det

4321

4321

2
4

2
3

2
2

2
1

2
4

2
3

2
2

2
1 =



















−−−−

−−−−

αααα

αααα

αααα

αααα
        (13) 



b) for the clamped (s = 0) - support (s = L) edges 
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c) for the clamped (s = 0) - clamped (s = L) edges 

,        (15) 
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d) for the clamped (s = 0) - free (s = L) edges 
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The determination of the complex natural frequencies Ω(U) is reduced to the problem of 
finding zeros of the corresponded function G(α1,α2,α3,α4) = det.  

Eq. (11) it is possible obtain 
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from which it is follows 
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Corresponding boundary conditions give  
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and after substituting  
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Now, we formulate a very important aeroelastic stability theorem in the most general form. 

 
4. Stability theorem    

The complex natural frequency of the studied aeroelastic system  Ω  depends on the flow 

velocity U such, that value of its derivation d
dU

Ω  at the beginning (i.e. for U = 0) is equal zero 

for any symmetrical boundary conditions and is pure imagine value for every unsymmetrical 
boundary conditions. 

The proof of this statement (by analytic calculating of the value d
dU

Ω ) we will show for the 

case b) clamped (s = 0) - support (s = L) edges, nevertheless all other cases a), c) and d) can 
be proved by similar way and results of they all will be presented in summary table. 

Let  and , (j = 1,…,4) satisfy the characteristic equation at the beginning (U = 0), i.e. 
are solutions of the equation     
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Then, it is possible to involve next relations for derivatives: 
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After substitution U = 0 into the Eq. (11) it is possible we can write 
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Then, we obtain the solutions of the Eq. (26) in the form:  
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where  are positive real numbers. βλ and

Now we will show how it is look the expression (21), for example, for the boundary 
conditions clamped (s = 0) - support (s = L) edges. 
After substitution the wave numbers , which have the structure (27) into derivatives of the 
corresponded boundary function G (14) we obtain  

0, jα

0,20,1

dG dG
d dα α α αα α= =

= −  and  
0,3 0,4

dG dG
d dα α α αα α= =

= −  . 

Analogously, it is possible to involve same relations for 
0, j

dF
dU α α=

, 
0, j

dF
d α α=Ω

 and 
0, j

dF
d α αα =

. 

Finally   

0,1 0,2 0,3 0,4

1 1 1 1 3 4, , , , , ,re im re im im imdG dG dG dG g ig g ig ig ig
d d d dα α α α α α α αα α α α= = = =

 
 = + − +     

 , (28) 

0,1 0,2 0,3 0,4

, , , , , ,re re im im
u u u u

dF dF dF dF f f if if
dU dU dU dUα α α α α α α α= = = =

 
= − −    

  ,  (29) 

0,1 0,2 0,3 0,4

1 1 3 3, , , , , ,o o o o
dF dF dF dF f f f f
d d d dα α α α α α α α= = = =

 
=  Ω Ω Ω Ω  

  ,   (30) 

0,1 0,2 0,3 0,4

, , , , , ,re re im imdF dF dF dF f f if if
d d d d α α α α

α α α α α α α αα α α α= = = =

 
= − −    

  ,  (31) 

where , , ,  are real values. Substituting these relations 

for corresponded derivatives of G and F into formula for 
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The relation (32) shows that the natural frequency  Ω  changes at the beginning (U = 0) its 
imaginary part only. 

The Tab. 1 presents the analytically involved derivatives (anal.) in comparison with numerical 
results obtained within 1D (num.-1D, see: [11], [12], [14]) and 3D (num.-3D, see: [13], [17]-
[23]) shell theory for several types of boundary conditions and next input parameters: 



h = 0.0002 m, R = 0.15 m, l = 1 m, E=7.2·1010 Pa, ν 4, ρ3.0= s =2800 kg·m-3, 
p1 = 500 Pa, ρt =12 kg·m-3,  n = 6 . 

 
m 






 Ω

Ud
dIm

(anal.)
 

Ud
dδ

(num.-1D)
 

Ud
dδ

(num.-3D)
 

1 0 0 0 Supp-supp 
2 0 0 0 
1 -0.22685e-3 -0.2246e-3

 
-0.2160e-3

 
Clamp-supp 

2 -0.67742e-3 -0.6762e-3
 

-0.6500e-3
 

1 0 0 0 Clamp-clamp 
2 0 0 0 

Clamp-free 2 2.80e-3 - 88.66e-3
 

Tab. 1.  The comparison of the analytically involved derivatives (anal.) with numerical 
results obtained within 1D  and 3D  shell theory for several types of boundary 

conditions and shape modes  n = 6 and  m = 1 and 2 .
 The formulated above theorem together with next properties of adjoint solution give complete 

notion about stability (if you like instability) of studied aeroelastic systems. 
 
5. Properties of adjoint solutions   
If the set quantities ( ){ }Ω= ,U,,...,jj 81λ  is a solution of Eqs. (3.18)-(3.24) with the boundary 
conditions (2.8), then the sets  

       a)        ( ){ }Ω−−= ,,8,...,1 Ujjλ , 

b) ( ){ }** ,,8,...,1 Ω−=− Ujjλ ,                     (33) 

       c)        ( ){ }** ,,8,...,1 Ω−=− Ujjλ   

are solutions too. The asterisks denote the complex conjugated values.  
 

        
Fig. 1. 



Proof of this property follows from holomorphic properties of all expressions presented in 
Eqs. (11)-(16). Graphic visualization of this property in the 3D space (U, ReΩ, ImΩ) is shown 
in Fig. 1. This property is valid in the more general case 3D shell theory too (see [13]). 
We note that a sign change of the flow velocity U can be interpreted as a change in the 
orientation of the boundary conditions with respect to the flow velocity. Hence from the Eq. 
(33) it follows that if a certain vibration mode of the shell in a certain flow regime (at a 
specific value of U) is stable (i.e., Im(Ω)>0, Re(Ω)≠ 0), then under the same conditions the 
vibrations of the shell with the boundary conditions at the entrance and exit switched will be 
unstable (i.e., Im(Ω)<0, Re(Ω)≠ 0). 
 
6. Conclusion 
The presented theoretical results correspond to the previous studies, where neither the internal 
nor the external friction of the shell in fluid has been taken into account. In that case the 
cylindrical shell containing fluid flowing from the clamped to the supported edge or from the 
free to the clamped edge is unstable for any arbitrarily low fluid flow velocity. 
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