

INŽENÝRSKÁ MECHANIKA 2005

NÁRODNÍ KONFERENCE s mezinárodní účastí Svratka, Česká republika, 9. - 12. května 2005

CONTRIBUTION TO CALCULATION OF THE STABILITY LIMIT OF MILLING CONSIDERING THE COMPLEX FORCE COEFICIENT

P.Bach

Summary: The paper presents firstly a review of the most important method of stability calculation for machining process. Based on this, the evaluation of stable depth limits is provided next. Finaly, a new approach to the process stability condition is delt with, concidering a proportionality coefficient in complex form as well as its influance on machine tool performance.

1. Úvod

Nestabilním procesem obrábění se rozumí stav, kdy za jistých podmínek vznikne mezi nástrojem a obrobkem samobuzené chvění. Za této situace nelze obrábět a je třeba změnit řezné podmínky tak, aby se proces stabilizoval. Jelikož je často nutné snížit řezný výkon stroje, považuje se sklon strojů k nestabilitě za závažný negativní jev a hledají se neustále metody vedoucí k jeho odstranění. Většinou však lze pouze snížit náchylnost soustavy ke vzniku samobuzeného chvění, nikoli ji zcela odstranit. Obecně je ke k tomu nutné udržet statickou a dynamickou tuhost stroje, nástroje a obrobku na dostatečné úrovni. Existují však také metody, které umožňují odstranit nestabilitu obrábění při současném zvýšení řezného výkonu. Mechanismus a příčiny vzniku nestability i klasický výpočet meze stability jsou formulovali J. Tlustý, L. Špaček (1963).

Ke stálé řezné síle přibude na a nad mezí stability periodicky proměnlivá složka, jejíž velikost je úměrná modulační výchylce podle tzv. vazbového koeficientu Rb, který se v klasické teorii předpokládá reálný. Tobias a Poláček (1965) však prokázali, že vazbový koeficient je, přesně vzato, komplexní a frekvenčně závislý. Jestliže považujeme vazbový koeficient za součást přenosu řezného procesu, znamená to, že mezi vstupním budícím signálem řezného procesu a výstupem – řeznou silou, existuje časové zpoždění. V tomto příspěvku ukážeme teoreticky jak tato skutečnost pozmění výpočet a meze stability i samotné hodnoty meze stability. Budeme se rovněž zabývat možnostmi využití komplexity vazbového koeficientu pro zvýšení výkonnosti obrábění.

2. Podmínka stability s reálným koeficientem vazby

Výpočet stability byl publikován v roce 1963, (Tlustý, Špaček, Poláček, Tobias) a mnohokrát ještě později např. Tlustý ve svých stěžejních publikacích (1985 a 1999). Pro odvození podmínky stability platí schéma na Obr. 1. Mechanická konstrukce stroje je na obrázku

^{*}Ing. Pavel Bach, CSc, Výzkumné centrum pro strojírenskou výrobní techniku a technologii, ČVUT v Praze, fakulta strojní, Praha 2, Horská 3, tel.: 605205911, e-mail: p.bach@rcmt.cvut.cz

znázorněna nástrojem s obrobkem a jejich spojením. Vzájemná (řezná) rychlost nástroje a obrobku je označena vektorem v.

Stroj charakterizují dynamicky jeho tvary kmitů, jejichž relativní výchylky mezi nástrojem a obrobkem jsou např. ve směrech X_k , X_j natočených vůči normále o úhly $\alpha_j \alpha_k$, obecně o α_v . Při prvním řezu nástroje vyvolají složky řezné síly, spadající do směru tvarů vlastní kmitání, které se ve směru normály k obráběnému povrchu projeví jako Y_0 (*t*). Nazveme je "vlnitost povrchu". V následném řezu kmitá stroj kmity Y(t), které opět počítáme orientovány do směru normály. Kmitání stroje a vlnitost obrobeného povrchu mají amplitudy Y a Y_0 a jsou vzájemně posunuta o fázi ψ . Proti normále má řezná síla F úhel β .

Obr. 1 Odvození podmínky stability

Proměnlivou složku řezné síly můžeme dle Tlustého vyjádřit vztahem:

$$F = Rb.(Y_0 - Y). \tag{1}$$

Pro výchylku kmitání nástroje platí vztah

$$Y = F \cdot \Phi(f) \tag{2}$$

Rozdíl amplitud vlnitosti a kmitů stroje vyjadřuje variace hloubky třísky. O koeficientu R předpokládáme, že jeho hodnota záleží hlavně na obráběném materiálu a může být korigována řeznými podmínkami, zejména geometrií nástroje. Záleží i na opotřebení nástroje. Koeficient odpovídá měrné řezné síle K_s , čili platí $R=K_s$. Šířka třísky je v teorii stability označena b a odpovídá axiální hloubce třísky označované často a_p Dále o koeficientu R zatím předpokládáme, že je reálný, tj. že mezi řeznou silou F a tloušťkou třísky (Y_0 -Y), není fázový posuv a velikost síly není závislá na frekvenci kmitání. Funkce $\Phi(f)$ je komplexní, příčná, receptance (příčný přenos, cross-receptance) této kmitavé struktury, platná pro určitý daný bod působiště síly F. Předpokládáme-li, že známe směry rozhodujících tvarů kmitů i směr řezné síly a normály, můžeme v dalších úvahách pracovat pouze s orientovanou poddajností $\Phi_o(f)$, tj. s poddajností systému ve směru normály k obráběnému povrchu. Index "o" pro jednoduchost zápisu vynecháme. Vyloučíme nejprve sílu z rovnic (1) a (2) a použijeme podmínku stability ve tvaru

$$\frac{|Y_0|}{|Y|} = 1,\tag{3}$$

což vyjadřuje požadavek, aby se amplituda kmitů v následujících řezech neměnila, čili aby systém setrval přesně na mezi stability. Dalšími algebraickými úpravami dostáváme rovnost absolutních hodnot dvou komplexních funkcí.

$$\frac{1}{Rb} + \Phi = \Phi$$
, neboli $\frac{1}{Rb} + G(f) + jH(f) = G(f) + jH(f)$

Z rovnice plyne podmínka rovnosti reálných částí obou funkcí

$$\frac{1}{Rb} + G(f) = \pm G(f), \qquad (4)$$

přičemž rovnost imaginárních částí je evidentní. Pro znaménko plus vede výpočet na nekonečné velkou šířku třísky *b*. Pro znaménko minus dostaneme konečný tvar podmínky stability:

$$Rb = -\frac{1}{2G(f)}.$$
(5)

nebo pro hloubku třísky na mezi stability vztah

$$b_{mez} = -\frac{1}{2RG(f)_{neg}}.$$
(6)

Obrábění bude stabilní pouze v případě, že

.

$$b_{mer} \leq -\frac{1}{2RG(f)_{neg}}$$
(6)

Obr. 2 Grafický odečet Gmin v reálné charakteristice jednoho dominantního a současně kritického tvaru kmitů, $G_{\nu}(f)$

Protože hloubka třísky *b* je číslo kladné, může být podmínka (6) splněna pouze pro záporné hodnoty G(f). Proto je funkce G(f) označena indexem "neg". Na Obr. 2 vidíme příklad G(f). Rovnice (6) může být splněna pro všechny hodnoty G(f) od vlastní frekvence 3511Hz výše. Pro f=f_v a f blížící se ∞ roste šířka třísky nade všechny meze. Podíváme-li se na tvar reálné charakteristiky vidíme, že křivka klesá od hodnoty vlastní frekvence se stoupající budící frekvencí velmi rychle na záporné minimum, jehož hodnotu nazveme kritickou hodnotou. Té odpovídá i kritická frekvence $f_v+\delta=f_{krit}$ [Hz]. Vztah (6) je pak splněn pro minimum funkce G(f)_{neg, min} a příslušná šířka třísky je minimální ze všech možných. Označíme ji b_{krit}. Platí tedy:

$$b_{mez,krit} = \frac{-1}{2RG(f)_{neg,\min}.z}$$
(8)

kde z je počet zubů nástroje případě, že v záběru je více než jeden zub, např. někdy u frézy. Je-li při obrábění zvolená hloubka třísky větší než b_{mez} , bude se amplituda Y velmi rychle zvětšovat. Díky nelinearitám v systému se ustálí na určité hodnotě. Samobuzené kmity nevzniknou, zvolíme-li šířku menší než mezní. Díky předpokladu reálného R, může být podmínka stability Y/Y₀=1 vyjádřena pouze reálnou částí komplexní příčné receptance $\Phi(\omega)$.

3. Podmínka stability s komplexním koeficientem vazby

Tobias a další autoři (1965), uvažovali komplexní koeficient vazby R ve tvaru:

$$R = r.e^{j\rho(f)} , (9)$$

kde $\rho(f)$ je frekvenčně závislá fáze mezi silou a modulační výchylkou a r je absolutní hodnota této komplexní funkce pro každé f. Předpokládejme stejný vztah (1) pro variabilní složku řezné síly. Podmínku stability vyjádříme tentokrát v komplexním tvaru:

$$Y_0 = Y \cdot e^{-j\psi} \,. \tag{10}$$

kde pro velikosti vektorů (amplitudy vln) stále platí vztah (3). Dosazením (9) do (1) dostaneme:

$$F = -r.e^{j\rho}.b.(Y - Y_0)$$
(11)

což dále upravíme na

$$\frac{-1}{r.b}e^{-j\rho} = \frac{Y}{F} - \frac{Y_0}{F} = \frac{Y}{F} - \frac{Y.e^{-j\psi}}{F} = \Phi - \Phi_0, \qquad (12)$$

Tento výsledek nazveme **"komplexní rozdílový vektor"** ($\Phi - \Phi_0$). V dalších úvahách budeme pracovat pouze s rozdílovým vektorem. Přináší to jisté výhody oproti klasickému přístupu prostřednictvím G_{min}. K výpočtu stability je nutné znát fázový úhel ρ , jehož měření není jednoduché, protože se musí provádět při obrábění. Proto se tento postup v praxi zatím neujal a většinou se k výpočtům používá reálného přenosu. Nové experimentální možnosti mohou tuto situaci změnit.

4. Komplexní podmínka stability podle Tlustého-Poláčka

Podmínku stability s uvažováním komplexity vazbového koeficientu R můžeme **podle** Tlustého a Poláčka (1963) odvodit také kvadraturou rovnosti dvou komplexních vektorů. Periodickou složku řezné síly předpokládáme ve stejném tvaru (11) jako Tobias. Odezva systému stroje na proměnlivou složku řezné síly F bude:

$$Y = F.\Phi(\omega) = F[G(\omega) + jH(\omega)] = F[\sum G_i(\omega)] + j\sum H_i(\omega)]$$
(13)

Podmínka pro stabilitu systému je opět (3). S pomocí rovnic (11) a (13) můžeme nyní vyjádřit podmínku stability takto

$$\frac{|Y|}{|Y_0|} = \left|\frac{(1/rb)e^{-j\rho} + G + jH}{G + jH}\right| = 1$$
(14)

z toho plyne rovnost absolutních hodnot komplexních čísel:

$$\left|\frac{1}{rb}.(\cos\rho - j\sin\rho) + G + jH\right| = |G + jH|$$

Povýšením této rovnice na druhou převedeme celý problém do oblasti reálných čísel.

$$\left(\left|\frac{1}{rb}\cdot(\cos\rho - j\sin\rho) + G + jH\right|\right)^2 = \left(\left|G + jH\right|\right)^2$$
(15)

Dostaneme:

$$\left(\frac{1}{rb}\cos\rho + G\right)^2 + \left(H - \frac{1}{rb}\sin\rho\right)^2 = G^2 + H^2,$$

$$\frac{1}{rb} \cdot 2G\cos\rho + \frac{1}{(rb)^2}(\cos^2\rho + \sin^2\rho) - \frac{1}{rb}2H\sin\rho = 0.$$

Řešení této rovnice pro 1/rb=0 nemá smysl. Druhé řešení je

$$-\frac{1}{2rb} = G\cos\rho - H\sin\rho, \qquad (16)$$

kde G je suma G_v a H suma H_v .

Z toho pro mez stability b(f) dostáváme:

$$b_{mez}(f) = -\frac{1}{2r(G\cos\rho - H\sin\rho)}.$$
 (17)

Protože b je kladná hodnota, je rovnice splněna pro negativní hodnoty jmenovatele.

$$G.\cos\rho - H.\sin\rho \le 0$$

Jelikož i goniometrické funkce dávají kladné hodnoty v uvažovaném rozsahu frekvencí a jemu odpovídajícím úhlům ρ >0, má rovnice (17) smysl pro $|G.\cos \rho| \ge |H.\sin \rho|$, neboť $b_{mez}>0$.

5. Diskuse výsledků

Podívejme se nejprve na Tobiasovu hypotézu a pokusme se vyjádřit citlivost podmínky stability na komplexitu vazbového koeficientu v širším frekvenčním rozsahu. Vzhledem k tomu, že platí podmínka (3), bude rovnice (12) splněna tehdy, když nositelka rozdílového vektoru svírající s reálnou osou úhel - ρ , protne kružnici o poloměru $|\Phi|$ se středem v počátku. Viz Obr. 3. Rovnici (12) znázorníme v komplexní rovině tak, že pro určitou frekvenci vyneseme receptanci $\Phi(f)$. Nositelka bude natočena proti hodinám (CCW) o úhel - ρ vzhledem k reálné ose, protože vektor (Y – Y₀) předbíhá sílu, která leží v +Re. Rozdílový vektor má velikost 1/rb. Úkolem je nalézt maximální velikost rozdílového vektoru, které bude odpovídat minimální hloubka třísky na mezi stability, tedy kritická hloubka. Současně se zjistí frekvence chvění.

Obr. 3 Vektorový výpočet stability v komplexní rovině s komplexním koeficientem vazby. Vpravo:výpočet na modelu kmitavé soustavy.

Podle (18) je velikost komplexního rozdílového vektoru větší než velikost reálného vektoru. Původní úhel mezi vektory ($\Phi - \Phi_0$)^{Real} je ψ . Nyní je tento fázový úhel (ψ -2 ρ), protože úhel γ sevřený mezi vektory se zvětší právě o 2 ρ , jak plyne z obrázku vpravo. Za podmínek (9) až (11) je z geometrie obrázku zřejmé, že pro velikost vektoru platí:

$$\frac{1}{rb} = \left| \Phi^{-r} \Phi_0 \right| = 2[G(f) \cdot \cos \rho + H(f) \cdot \sin \rho].$$
(19)

Mez stability vyjádřená z tohoto vztahu tedy je

$$b_{mez}(f) = \frac{1}{2r |(G \cos \rho + H \sin \rho)|}$$
(20)

Absolutní hodnotu zavádíme proto, že jmenovatel je v uvažovaném rozsahu fáze $\gamma = 0^{\circ}$ až 180° negativní. Díky fázi mezi silou a proměnlivou hloubkou třísky závisí nyní b_{mez} na reálné i imaginární části příčného frekvenčního přenosu stroje. Všechny proměnné jsou však reálné funkce frekvence chvění. Pro $\rho=0$, tj. r reálné, přechází vzorec na tvar (6).

K vyhledání maximální délky rozdílového vektoru (minimální hodnoty b_{mez}) použijeme numerické simulace na modálním modelu soustruhu, jehož parametry byly zvoleny. V praxi se model sestavuje dle naměřených modálních parametrů. Fázi $\rho(f)$ předpokládáme podle Tobiase v rozsahu (–5°až 40°). Průběh meze stability je na Obr. 4. Hledaný nejdelší rozdílový vektor přísluší frekvenci 105Hz. To znamená, že s touto frekvencí se objeví samobuzené kmity. Kritická axiální hloubka třísky je 2,67mm.

Obr. 4 Mez stability podle Tobiase. Kritická mezní tříska $b_{krit}=2,67$ mm/105Hz. Konfigurace modelu: vlastní frekvence 100 Hz a 110Hz, směr síly 71,5°.

Abychom dokázali tvrzení (18), totiž že mez stability poklesne když bude koeficient vazby komplexní, musíme ještě tento výsledek porovnat s mezní třískou při reálném koeficientu vazby pro daný model a jeho konfiguraci. Na Obr. 5 vidíme výsledek srovnávacího výpočtu pro dvě směrové orientace. Směrové faktory se liší odklonem síly od normály, která má směr osy y, protože se jedná o soustružení stranovým nožem. Nahoře je případ, kdy odklon síly byl 71,5°. Dole je síla odkloněna jen o 20°. Vlevo jsou komplexní přenosy pro reálný koeficient vazby R. Výsledky v grafech potvrzují teoretické snížení meze stability podle hypotézy Tobiase a to zejména v oblasti nízkých frekvencí. V okolí minima není rozdíl prakticky žádný. Jen malý vliv má směrová orientace síly, která ovlivňuje hlavně frekvenci, při které chvění nastane, danou extrémem G-přenosu.

Obr. 5 Mez stability pro komplexní R podle Tobiase ve srovnání s reálným koeficientem (Tlustý-Poláček). Hodnoty kritických třísek: nahoře "reál"=2,76mm, "komplex"=2,68mm. Dole "reál"=3,4mm, "komplex"=3,0mm.

Graf meze stability podle Tlustého a Poláčka vidíme na Obr. 6. Je použit stejný model jako v předchozím případě se směrem síly 71,5°.

Kritická hodnota mezní třísky je u daného modelu prakticky stejná s křivkou s reálným R. Tentokrát je při vyšších frekvencích stabilita nižší. Značný vliv na zvýšení meze stability má komplexní vazbový koeficient v oblasti nízkých frekvencí.

Obě hypotézy pouvažují přenos mechanické struktury stroje za neproměnný ve smyslu působení fáze ρ . Pokusme se nastínit jiný pohled na vektorovou rovnici s rozdílovým vektorem. Použijeme stejný tvar koeficientu vazby jako Tobias i Tlustý a napíšeme přenos řezného procesu s vazbovým koeficientem rovným K_s, což je měrná řezná síla a reálná hodnota.

$$Rb(j\omega) = K_s \cdot b \cdot e^{j\rho(\omega)} \,. \tag{21}$$

Budící síla bude:

$$F = K_s . b . (Y_0 - Y) . e^{j\rho} .$$
⁽²²⁾

Rovnice vyjadřuje předpoklad, že modulovaná síla se opožďuje za (modulační) výchylkou, tj. za změnou hloubky třísky o fázový úhle ρ. Podmínku stability zachováme v komplexním tvaru:

$$Y_0 = Y \cdot e^{-j\psi}, \text{ přičemž platí } |Y| = |Y_0|.$$
(23)

To znamená, že vlnitost má na mezi stability stejnou amplitudu jako kmity nástroje a jejich vzájemná fáze je ψ . Dosazením (23) do (22) dostaneme pro modulovanou sílu

$$F = K_s b (Y e^{j(-\psi+\rho)} - Y e^{j\rho})$$
⁽²⁴⁾

což postupným dělením *Rb* a *F* upravíme na konečný vztah:

$$\frac{1}{K_s.b} = \Phi.e^{j(-\psi+\rho)} - \Phi.e^{j\rho} = (\Phi_0(f) - \Phi(f)).e^{j\rho(f)} = \Phi_{0\,\mathrm{mod}} - \Phi_{\mathrm{mod}}.$$
(25)

Tato rovnice zdůrazňuje, že oba vektory, vektor "vlnitosti" Φ_0 i vektor, kmitů" Φ , jsou modifikovány stejným vektorem e^{jp(f)} závislým na vzájemné fázi budící síly a proměnlivé hloubky třísky. (viz Obr. 7). Zdůrazňujeme, že oba vektory mají stejnou frekvenci. Vektor $\Phi(f)$ je natočen o jistý úhel $\rho(f)$. Protože se o stejný úhel a ve stejném smyslu se natočí i vektor $\Phi_0(f)$, zachovává se délka rozdílového vektoru $\Phi_0(f)$ - $\Phi(f)$ v modifikovaných souřadnicích. Platí:

$$|\Phi_0(f) - \Phi(f)| = |\Phi_{0mod} - \Phi_{mod}| = 2G(f)$$
 (26)

Vypočtěme souřadnice konce modifikovaného přenosu v původních souřadnicích Re, Im ležícího v kvadrantu, kde obě souřadnice jsou záporné.

$$\Phi_{\rm mod} = \Phi . e^{j\rho} = (-G - jH).(\cos\rho + j\sin\rho) = -(G\cos\rho - H\sin\rho) - j(G\sin\rho + H\cos\rho) = (27)$$

= -(G_{mod} + jH_{mod})

Nezávisle byl shora podle Tlustého-Poláčka odvozen vzorec (17). Jeho porovnáním s rovnicí (27) vidíme, že člen jmenovatele (G.cosp-H.sinp) je reálná souřadnice modifikovaného přenosu Φ_{mod} . Mez stability je tedy dána dvojnásobkem reálné souřadnice přenosu $\Phi(f)$ modifikovaného fází ρ . Velikost souřadnice lze odvodit i z geometrických vztahů v Obr. 7 jak je naznačeno kótami G.cosp a H.sinp. Pro hloubku třísky na mezi stability podle toho platí:

$$b_{mez} = \frac{-1}{2K_s.G_{\text{mod,neg}}},\tag{28}$$

kde jsme G_{mod} označili ještě indexem "neg" na znamení, že vztah má smysl pouze pro záporné souřadnice.

V rovnici (25) jsou K_s i b reálná čísla. Stejně jako u reálného koeficientu vazby, bude rozdílový vektor reálný pouze v případě, že úhel sevřený vektory $\Phi_0(f)$ a $\Phi(f)$ bude půlen imaginární osou. To je splněno v modifikovaném souřadném systému a pravá strana rovnice je pak reálná. Viz Obr. 7. Vektor $\Phi_{0 \text{mod}} - \Phi_{\text{mod}}$ je rovnoběžný s natočenou reálnou osou. Reálné číslo (1/ K_s .b) je velikost modifikovaného rozdílového vektoru. Čili, můžeme psát také:

Obr. 7 Modifikace komplexního přenosu. Příklad modifikace přenosu systému se dvěma stupni volnosti a násobnými vlastními frekvencemi.

$$\frac{1}{K_s b} = \left| (\Phi_0(f) - \Phi(f)) e^{j\rho(f)} \right|$$
(29)

Velikost rozdílového vektoru je dána absolutní hodnotou rozdílu modifikovaných vektorů poddajností pro každou budící frekvenci. Tento rozdíl ovlivňuje pouze vzájemná fáze těchto vektorů ψ , resp. γ a nikoliv fáze $\rho(f)$. Přenosy stroje Φ a Φ_0 jsou pootočeny v komplexní rovině o stejný úhel $\rho(f)$, protože mají stejnou frekvenci. Protože reálné ani imaginární části těchto přenosů již nejsou v původních souřadnicích stejné, není jejich rozdíl reálné, ale komplexní číslo, navíc frekvenčně závislé. Pro toto číslo pak platí úprava rovnice (12), Tobiasův tvar:

$$\frac{1}{K_s.b}.e^{-j\rho} = \Phi_0 - \Phi \tag{30}$$

Známe–li funkce $\Phi(f)$ a $\rho(f)$ vypočteme hledané hodnoty b_{mez} na mezi stability přímo z (28). Za vazbový koeficient dosadíme hodnotu měrné řezné síly K_s. Obrábění bude stabilní, pokud bude zvolena hloubka třísky dle nerovnosti:

$$b_{mez} \le \frac{-1}{2.K_s.(G\cos\rho - H\sin\rho)}.$$
(31)

kde přenosy G a H jsou opět míněny jako součtové receptance orientované do zvoleného směru. Hodnoty G a H zde dosazujeme se znaménky tak, jak je čteme z charakteristik. Fázi ρ předpokládáme rovnoměrně závislou na frekvenci. Použijeme-li Nyquistovy podmínky pro mez stability je přenos otevřené smyčky

$$\Phi.(1 - e^{-j\psi}).K_s.e^{j\rho}.b = -1.$$
(32)

Pro rozdílový vektor dostáváme stejný vztah jako (30).

6. Závěr

Uvažováním komplexního vazbového koeficientu zavedeme do vztahu pro mez stability imaginární složku přenosu stroje. Úroveň stability nyní již nezáleží pouze na G-přenosu, ale na rozdílu G- a H-přenosů, resp. jejich průmětů. To znamená, že mezní tříska modifikovaného přenosu může být vyšší oproti přenosu nemodifikovanému. Zvýšení záleží na fázovém úhlu ρ

a na imaginární části přenosu H a na jejich vztahu k G-přenosu, jakož i na budící frekvenci, resp. otáčkách nástroje. Tato teoreticky zjištěná skutečnost se opírá o experimentálně potvrzenou existenci fázového posunutí ρ.

Na základě předchozích úvah a výpočtů je možné formulovat tuto hypotézu: mez stability a tedy i výkonnost stroje by bylo možné zvýšit nuceným zavedením fázového zpoždění periodické složky řezné síly a její modulační výchylky.

7. Poděkování

Tato práce vznikla za finančního přispění MŠMT v rámci podpory projektu výzkumu a vývoje LN00B128.

8. Literatura

- J. Tlustý, L. Špaček, (1954) Samobuzené kmity v obráběcích strojích, ČSAV, Praha,.
- J. Tlustý, (1999) Manufacturing Processes and Equipment, Prentice Hall, New Jersey.
- J. Tlustý, M. Poláček, (1963) The Stability of the Machine Tool Against Self Excited Vibration in Machining, *Proc. Eng. Res. Conf. ASME*, Pittsburgh,.
- J. Tlustý, (1965) A Method of Analysis of Machine Tool Stability, *Proc. M.T..D.R. Conference Manchester.*
- S.A. Tobias, (1965) Machine Tool Vibration, Blackie and Son, London.
- J. Tlusty, (1985) "Machine Dynamics", *Chapter 3 in Handbook of High-Speed Machining Technology*, ed. R.I.King, New York, Chapman and Hall.