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Summary:  The contribution deals with an application of discontinuous Galerkin 
method to free surface flow calculation. Both the super- and sub-critical flows are 
studied for steady and unsteady flow conditions. The numerical method is tested 
experimentally on flow over a broad crest weir of height to length ratio 1/8. Also 
VOF (volume of fluid) method is tested for the same geometrical configuration. 

1. Introduction 
Free surface flow, mainly flood propagation, still possesses a great deal of concern. During 
last decade, an enormous amount of work on mathematical modelling has been done. There 
are two major groups of mathematical approach to handle the free surface flow. The first one 
is well known Navier-Stokes equations or some simplifications of them like Reynolds-
Averaging-Navier-Stokes equations (RANS), LES and others. The free surface is moving 
with the velocity of the fluid particles located at the boundary and therefore its position is one 
of the unknowns and has to be solved by an additional numerical method. VOF (volume of 
fluid) is a possibility how to include free surface problem to numerical procedures. The 
second mathematical approach simplifying the solution is a depth averaging procedure of the 
N-S equations that leads to Shallow Water Equations. In our contribution we focus on the 
application of a finite volume method to solve the one-dimensional SWE by means of 
discontinuous Galerkin method. Also an example of CFD modelling of steady flow over an 
obstacle is presented.  

 

 

2. Unsteady channel flow 
On the beginning let we consider a usual assumption of hydrostatic pressure distribution in 
the channel. Such assumption results in a neglect of the vertical acceleration component. 
Integrating of momentum conservation equations over a channel area the classical equations 
of the open channel flow can be derived. The resulting equations of mass and momentum 
conservations of the one-dimensional unsteady channel flow of arbitrary cross section are as 
follows 
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where vectors of variables , fluxes  and source terms  are given as (Tseng, 1999) 

 

 
where  is local cross section area,  is flow discharge,  is acceleration of gra

 is channel bed slope,   is intensity of external flow discharge, 
velocity component of external source in  direction. 

Influence of hydrostatic pressure distribution  and pressure force acting due to
variation of the channel width  can be written as 

 
where  and  is flow depth (Fig. 1). For trapezoidal cross section (an
special case also for rectangular and triangular cross section) the integrals  and  have
analytical form 

 

 
where  is width of channel bed and  is side slope ( ) 

 

 
Fig. 1 Channel cross section 

 

The friction slope  is given by the following equation 

 
where  is hydraulic radius defined as ratio of cross sectional area of flow, 
wetted perimeter ratio, . Velocity or “Chezy” coefficient  incorporate
influence of viscosity. A lot of empirical or semi-empirical relations of the velo
coefficient can be found. For example Pavlovsky suggested following form 
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where  is related with bed roughness (generally with channel condition). Another somewhat 
simpler relation is well known Manning’s equation 

(9)

 
Above derived partially empirical equations are able to solve a number of real problems 

with sufficient accuracy. For the channel of infinite width, precisely for unit section, it is 
possible to use flow depth  instead of flow area  and flow discharge  can be replaced by 

 where  is mean velocity. The result is following set of vector equations (without external 
sources) 

 (10)

 (11)

This form is known as shallow water equations and can be derived directly from general 
equations by the classical Saint-Vennant approach (de Saint-Vennant, 1871). 

 

 

3. Numerical procedure 
The conservative equations were solved with help of the discontinuous Galerkin method of 
first order (Hulsen, 1991, Atkins & Shu, 1998). This method originates from classical 
methods of finite volumes (LeVeque, 2002) but it assumes that inside the elements the 
searching functions are approximated by functions of higher orders. Individual elements 
mutually communicate via fluxes through element boundaries. On the boundaries we permit a 
function discontinuity and we handle with them by a similar manner as in classical methods 
of finite volumes.  

Let us consider an element  bounded by a surface  with outer normal . Inside the 
element the problem can be described via balance of quantity  in the following form 

            
(12)

 
where  if flow velocity and  is production of  in unit volume. The product of  and  can 
be considered as flux  

                                                       (13) 
Let us choose a basis of linearly independent functions  with finite number of members 

. Basis  has to be completed in the space of dimension . If we set the order of the highest 
member as  then . Additionally we suppose an approximate solution of  
inside the element in the form of linear combination of basis functions  

                                                            
 (14)

 



 

Complete discretization contains basis of both the spatial and the time functions. But there 
is a possibility to divide only space on the elements. The basis then contains functions of 
positional vectors and the coefficients  depending on the time. The problem results in a 
solution of ordinary differential equations for  . 

If we put the approximate solution back to the initial equations, the sum of all elements is 
not exactly zero, but it equals a value .  

                                       
(15)

 
 
Galerkin method supposes that the error  is orthogonal to all basis functions. Corresponding 
scalar products of functions  and  have to be zero 

                                        (16)

 
In comparison with other methods requesting zero value of error  in selected points of the 
element, Galerkin method uses an integral condition in the whole domain .  
 

These conditions have to be satisfied for all elements of function basis ( ). Set of 
equations for unknown values of derivations  can be written in matrix form. Let us 
introduce scalar , matrix , with scalar elements   
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and vectors , ,  which elements are given as 
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Then the time derivation of vectors of coefficients  could be rewritten in the form 

                                            
 (19)

 
If the basis functions  are properly chosen the matrix  can gain more suitable forms (for 

example if the basis functions  are orthogonal the result is a diagonal matrix , for 
orthonormal functions  the result is an unit matrix ). 

A numerical solution is presented based on the Runge–Kutta method (Gottlieb & Shu, 1998, 
Gottlieb et al., 2001).  To obtain stability a slope limiter is applied on every computational 
result of the Runge–Kutta method. 

 

 



 

4. Experimental set-up 
The above presented numerical approach was compared with experimental observations. As a 
flow situation a simple flow over a broad crest weir has been chosen. The experiments were 
conducted in a hydraulic flume of square cross section 0.25x0.25 m and of length 6 m. Both 
the side-walls and the channel bottom are made from smooth glass tables. The broad crest 
weir of trapezoidal cross section was placed 4 m from the channel inlet. Schematic view of 
the geometrical arrangement is shown in Fig. 2. Height of the weir was 30 mm, length 240 
mm on the top and 300 mm on the channel bed. The slope of the channel bed was set to zero.  

The shape of free surface over the weir was visualized by a digital video camera and the 
individual frames were subsequently processed on PC. The flow depths were continuously 
monitored with help of an ultrasound sensor Pepperl-Fuchs UC500-30GM-V1. Flow rates 
were measured by an inductive flow meter Krohne located on a delivery pipe. Due to the 
pump capacity the maximum attainable flow discharge was slightly below 10 l/sec. The flow 
discharges were controlled via a turncock situated just downstream the pump. Both the flow 
depths and flow rates were simultaneously handled on PC via PCMCIA card National 
Instrument with frequency of 20Hz.  
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Fig. 2 Schematic view of the broad crest weir 

 

5. CFD modelling 
Together with experimental observations and solution of shallow water equations also a CFD 
calculation of flow over the broad crest weir was performed. By means of Fluent 6.1 the 
standard two-dimensional k-ε model and the volume of fluid model solving the free surface 
were adopted. The VOF model is a surface-tracking technique applied to a fixed Eulerian 
mesh. It is designed for two or more immiscible fluids where the position of the interface 
between the fluids is of interest. In the VOF model, a single set of momentum equations is 
shared by the fluids, and the volume fraction of each of the fluids in each computational cell 
is tracked throughout the domain.  

In the case of interest the solution domain was 2.5 m long and 0,25 m height. To accelerate 
the numerical procedure and quickly balance an amount of liquid and air phases the laminar 
model was used on beginning. After that the solver was switched to the standard k-ε model 
performing unsteady flow calculation with time step of 0.001 sec.  

 

 

 



 

 

6. Results and discussion 

6.1. Steady flow condition 
During the steady flow measurements the flow rates were kept constant and after stabilising 
both the flow depths upstream and downstream the weir were monitored. Also the shapes of 
free surface over the weir were picked up by the digital video camera. Besides the 
experimental observation the numerical simulations were tested. Shallow water equations 
solved by the Galerkin method of first order were applied on a mesh of grid size 5 mm. A 
value n=0.01 was chosen as the Maning’s roughness parameter. The CFD modelling was 
tested only for one flow rate due to an enormous demand of computational time.  

Fig. 3 shows the measured and computed flow depths for various flow discharges. The 
results proved the correctness of numerical simulations in the regions where the vertical 
acceleration can be neglected. As concern the free surface over the weir the situation is 
somewhat different. The assumption of negligible vertical acceleration is no more valid 
mainly at the end of the weir and the result of numerical simulation is far from the 
experimental data. The profiles of free surface over the weir are shown in Fig. 4. The 
numerical simulation quickly achieves the critical flow condition while the real data get to 
critical condition near the end of the weir.  

Fig. 5 shows the CFD results (Fluent) of free surface profile for the flow discharge Q= 8.7 
l/sec. CFD solution is very close to the experimental data over the first half of the weir. But at 
the end of the weir the CFD data underestimate the real data, probably due to the poor 
simulation of the vortex region just downstream the upper edge of the weir. This is 
documented in Fig. 6 where the flow visualization is compared with the vectors of velocity 
field.  

 

 
Fig. 3 Sub- and super-critical steady flow conditions upstream and downstream the crest weir 



 

 
Fig. 4 Free surface profiles over the crest weir (Q=9.4 l/sec) 

 

x [mm]

-200 -100 0 100 200 300 400

H
 [m

m
]

0

20

40

60

80

100

120

Fluent simulation

 
Fig. 5 Free surface profiles over the crest weir – experimental data and CFD modelling 

(Q=8.7 l/sec) 

 



 

 
Fig.6 Detail of flow patterns just downstream the weir, upper part – visualization by air 

bubbles, lower part- result of Fluent calculation 

 

6.2. Unsteady flow condition 
To understand the unsteady experiments it is necessary to describe the hydraulic system in 
more detail. The water is pumped from a tank to the channel by a supply glass pipe of inner 
diameter 50 mm equipped by the turncock to control the flow rate and the inductive flow 
meter. The pipe ended in the inlet section below the channel bottom. When the pump is 
switched off the direction of the flow is reversed and the channel started to drain due to the 
siphon effect. Therefore the unsteady flow conditions were realised in two steps. In the first 
the pump was switched off, subsequently the turncock behind the pump was closed to stop the 
reverse flow. Due to the technical reasons there was some time delay between the pump 
switching off and closing the valve. The valve closing resulted in an introduction of a shock 
wave that was propagated back to the channel inlet and resulted in an additional increase of 
flow depth which was moved along the channel.  

Time series of flow rate were used as inputs to the numerical simulation by the Galerkin 
method. Based on these data the time series of flow depth were calculated. The comparison 
with experimental observation is shown in Figs. 7 and 8. Local increases of the flow depths 
are caused by the shock waves initiated by the valve closing. A very good coincidence 
between the numerical simulations and experimental data was attained for both upstream and 
downstream positions.  

 



 

 
Fig. 7 Time series of free surface and flow rate for unsteady flow condition – upstream 

position 

 
Fig. 8 Time series of free surface and flow rate for unsteady flow condition – downstream 

position 



 

7. Conclusion 
The contribution presents the application of the Glaerkin method solving 1D Shallow Water 
Equations for both steady and unsteady flow conditions. Due to the neglecting of vertical 
velocities the numerical solution considerably simplified the flow over obstacles like the 
broad crest weir. On the other hand the numerical simulation perfectly agrees with real data if 
the unsteady flow depths are in concern.   
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