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Summary: The article presents results of multicriteria design of airfoils suited
for sailplanes. Airfoils for root and tip wing section as well as for empennage has
been designed. The use of turbulators has been proposed on two older airfoils and
the possibilities of drag reduction has been discussed.

1. Introduction
Cross-country flight of a sailplane together with take-off and landing regimes create conflicting
demands on performance. To enhance airfoil aerodynamic properties, an optimization task
based on target criteria and Xfoil solver has been created. Since the constraint of trailing edge
shape for easy manufacture has been applied, the resulting airfoils are not general solutions of
the task, but an overall improvement has been gained over the best published airfoils in selected
category.

2. Airfoil tailoring
Wing airfoils have been designed for a conceptual study of a club class sailplane, Fig. 1. New
airfoils are labeled as PW212-163 (root) and PW311-161 (tip). 33 target criteria in three flight
regimes have been used, as established in previous work Popelka et al (2004). The airfoils
for the empennage - PW401-137 K25 for horizontal stabilizer and PW402-136 for vertical
stabilizer have been tailored as well. Modifications arose from successful design DU86-137/25,
Boermanns & Bennis (1992). Contours and calculated aerodynamic coefficients of PW series
airfoils, Figs. 2 to 7.

3. Modifications of older airfoils
Turbulators can affect significantly the properties of older airfoils. Xfoil solutions create a quick
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and verified tool for such analysis. Ongoing survey on sailplanes used in Czech Republic has
shown, that a room for improvement could be found on VSB-62 wing and VSO-10 empennage.
Forced transition on both sides of Eppler STF863-615 airfoil used on entire VSB-62 wing yields
reduction of detrimental laminar separation bubbles, Fig. 8 sq. Similar promising results are
predicted on NACA 64-009, NACA 64-0012 which create the empennage of VSO-10 sailplane,
Fig. 16 sq. Trends of polar shape are in general agreement with findings of wind-tunnel testing
performed byAlthaus (1991)on Wortmann FX 71-L-150 airfoil. Calculations show a slight
increase of drag under the conditions without flap deflection. This fact is an inspiration for fur-
ther experimental work and visualisation could prove, if laminar boundary layer can overcome
unsealed gap and continue on the flap itself.

4. Conclusions
Conceptual design of specific sailplane category with new airfoils is a logical consequence of
complex project, aiming at synthesis of numerical modelling, wind-tunnel and in-flight test-
ing. Created methodology, which was herein used for club class can be employed for arbitrary
sailplane. Parallel programme for training class has been established in extent of airfoil se-
lection from published data (according to optimization critera indeed) and conceptual study
of entire sailplane. Another more general aim is to study the possibilities of active control
of boundary layer transition to replace fixed turbulator strips used nowadays, as initiated by
Sartorius (2002).
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Figure 1: Conceptual design of club class sailplane, B project versions: B/Acro, B/Club, B/18m
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Figure 2: Geometry of PW212-163 airfoil
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Figure 3: Polars and lift curves of PW212-163
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Figure 4: Geometry of PW311-161 airfoil
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Figure 5: Polars and lift curves of PW311-161
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Figure 6: Geometry of PW401-137 airfoil
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Figure 7: Polars and lift curves of PW401-137 K25,Re = 7 · 105



-0.2

-0.1

 0

 0.1

 0.2

 0  0.2  0.4  0.6  0.8  1

Eppler STF 863-615

Figure 8: Geometry of Eppler STF 863-615 airfoil

Figure 9: VSB-62 and VT-16 sailplanes, wing root of VSB-62 (Eppler STF 863-615), photo
c©Jan Rensa jr.
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Figure 10: Calculated pressure distributions on wing root and tip airfoils, Re andcL correspond
to airspeed of V=85 km/h
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Figure 11: Calculated polars of wing root and tip airfoils at V=85 km/h, usage of turbulators

Figure 12: Horizontal stabilizer of VSO-10C OK-0530 sailplane, elevator deflectionγ = +16o,
photo c©Aeroklub Polǐcka
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Figure 13: Geometry of NACA 64-009 (horizontal stabilizer) and NACA 64-012 airfoils (ver-
tical stabilizer)
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Figure 14: Polars of NACA 64-009 airfoil,Re = 7 · 105
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Figure 15: Polars of NACA 64-009 airfoil,Re = 106
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Figure 16: Polars of NACA 64-012 airfoil,Re = 106


