
INŽENÝRSKÁ MECHANIKA 2005 
NÁRODNÍ KONFERENCE 

s mezinárodní ú astí

Svratka, eská republika, 9. - 12. kv tna 2005 

TRANSFER MATRIX METHOD FOR THE HUMAN VOCAL 
FOLD MODELLING 

V. Radolf*, T. Vampola* 

Summary: The model of the human vocal fold is created with transfer matrix 
method. The model is made from 32 cylindric or conic elements for Czech vowel 

/u/. The calculation is carried out for harmonic and general periodic signals in 

the input of the vocal fold (position of the glottis). Time dependent acoustic 

pressure and acoustic speed in the output (position of the mouth) and natural 

frequencies of the fold are computed. The results are compared with computations 

with 3D FEM model. 

1. Introduction 

The paper deals with use of transfer matrix method to determine dynamic characteristics of 
the human vocal fold. The advantage of this method is significant shortening of the 
computing time compared to computations with 3D finite element method. 

  Computing model of the real human vocal fold for Czech vowel /u/ was obtained with the 
help of direct transformation of MRI files into FEM models. Simplified model which is 
suitable for transfer matrix method was created on the basis of FEM model. Absorption of 
acoustic power at bounding surfaces and another kind of damping hasn’t been under 
consideration.

2. Mathematical statement of the problem 

2.1 Cylindric elements 

For an acoustic duct - a tube with rigid wall - we can derive 1D Webster’s wave equation for 
velocity potential: 
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where means 

tx,   [m2.s-1]   velocity potential 

  [kg.m-3]       medium density 

x   [m]         longitudinal coordinate of acoustic duct 

t          [s]  time 

xSS      [m2]   cross-sectional area of acoustic duct 

0c                    [m.s-1]  speed of sound       

Sr   [kg.m-3.s-1] specific acoustic resistance of the duct – to – length ratio 

After solution (1) and substitution of boundary conditions we obtain relationship between 
input „1“ and output „2“ of acoustic duct (for acoust.pressure p [Pa] and ac.speed  [m.sv -1] ). 
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where transfer matrix for the cylindric acoustic duct of length L  [m] is 
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         [m-1]  complex exponent 

   [s-1]  angular frequency of  harmonic signal 

When we neglect damping , we get 0Sr
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k      [m-1]    wave number,      
0c

k           (5) 

0z      [kg.m-2.s-1] wave resistance,  00 cz          (6) 

2.2 Conic elements 

1D Webster’s wave equation for an acoustic duct with variable cross-section is 
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We can solve equation (7) with the help of new coordination  [m] (Fig.1) and after 
substitution of boundary conditions we obtain relationship between input and output of 
acoustic duct (2). 
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Fig.1 - Conic element 

Transfer matrix for the  conic acoustic duct of length L  [m] is generally 
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and all it’s complex components are dependent on 00 ,,, Lzk .

In case 21 RR 0  components of transfer matrix converts into  
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which are components of transfer matrix for the cylindric acoustic duct without damping. 

2.3 Natural frequencies of the vocal fold 

Natural frequencies of acoustic duct are obtained by substituion of boundary conditions. If the 
input (or output) is opened/closed, acoustic pressure/speed is equal to zero in that position. 

  We can divide vocal fold into system of NE elements and then 
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where transfer matrix between input and output is 
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For boundary conditions „O-O“ (input opened, output opened) we get frequency equation 
from the term          (15) 01,1

12

ENt

Analogically for boundary conditions „C-C“ (input closed, output closed) we get 
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For boundary conditions „O-C“:         (17) 01,1
22

ENt

And for „C-O“:          (18) 01,1
11

ENt

By the numerical solution of frequency equation we obtain wave numbers  [mk -1]  and then 
natural frequencies  [Hz]. f

3. Calculation results 

3.1 Natural frequencies 

There are first five natural frequencies on the pictures Fig.6-Fig.9. These quantities were 
computed for one cylindric element (Fig.2), one conic element (Fig.3), system of three 
cylinders (Fig.4) and system of two cones (Fig.5). The computation was done with the 
transfer matrix method (TMM) and finite element method (FEM) for four boundary 
conditions: input/output – opened/closed. 

Natural frequencies of real human vocal fold (vowel /u/, Fig.6, Fig.7) were computed with 
TMM for cylindric elements, conic elements and with FEM. As we can see on Fig.10, TMM 
with conic elemenst gives fairly good results for boundary conditions „input (glottis) opened, 
output (mouth) opened“. The results for conditions „input closed, output opened“ are worse. 
The values obtained by computation with TMM and cylindrical elements are not satisfactory. 

Fig.2 - cylindric element, 5.eigenvalue 
(FEM), boundary conditions „O-C“ 

Fig.3 - conic element, 5.eigenvalue (FEM), 
boundary conditions „O-C“ 



Fig.4 – 3 cylindric elements, 5.eigenvalue 
(FEM), boundary conditions „O-C“ 

Fig.5 – 2 conic elements, 5.eigenvalue 
(FEM), boundary conditions „O-C“ 

Fig.6 – vocal fold /u/, 1.eigenvalue (FEM), 
boundary conditions „C-O“ 

Fig.7 – dividing of vocal fold into 32 
elements for using TMM 

Fig.8 – Natural frequencies, cylindric element 



Fig.9 - Natural frequencies, system of 3 cylindric elements 

Fig.10 - Natural frequencies, conic element 

Fig.11 - Natural frequencies, system of 2 conic elements 



Fig.12 - Natural frequencies, vocal fold – Czech vowel /u/ 

3.2 Time dependent quantities in the output of vocal fold 

Time dependent acoustic pressure, acoustic speed and volume flow in the output of the vocal 
fold were computed. At first harmonic signal with amplitude of speed 1 ms-1 and frequency 
100 Hz was apply to input. We can see that TMM with cylindric (Fig.13) and conic (Fig.14) 
elements gives different results. 

Fig.13 – Time dependance, harmonic signal, system of 32 cylindric elements 

Fig.14 – Time dependance, harmonic signal, system of 32 conic elements 



Second general periodic signal (decomposed by Fourier transform into 100 harmonic 
components) was apply to input. It is evident that computation with cylindric elements 
(Fig.15) changes only a phase for all harmonic components, but doesn’t change an amplitude. 
Time dependent quantities in the output for the same periodic signal in the input, the same 
geometry of vocal fold, but using conic elements are on the Fig.16. 

Fig.15 – Time dependance, periodic signal, system of 32 cylindric elements 

Fig.16 – Time dependance, periodic signal, system of 32 conic elements 

4. Conclusion

The paper deals with use of transfer matrix method to determine natural frequencies of vocal 
fold and time dependent quantities in the output of vocal fold. 

  Natural frequencies computed for small number of elements accord with results obtained by 
FEM. Natural frequencies for vocal fold as a system of 32 elements don’t accord so well. 
TMM with conic elements gives better results than TMM with cylindric elements (Fig.12). 

TMM with cylindric elements gives bad results of time dependent quantities in the output, 
because it changes only phase for all harmonic components, but doesn’t change an amplitude. 

Absorption of acoustic power at bounding surfaces and another kind of damping is not under 
consideration of this paper. 
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