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Summary: In this paper, an approach to dynamic analysis based on the fuzzy set 
theory is presented as a alternative to the classical stochastic dynamic analysis. 
The material parameters are considered as fuzzy quantities with a given 
distribution (fuzzy numbers). The dynamic analysis is then performed with help of 
the fuzzy arithmetic on α-cuts. The result is in the form of fuzzy numbers. In order 
to reduce computational time, the response surface function concept is employed. 
This approach is illustrated in an illustrative example of a 2D frame whose free 
vibration is analyzed. 

1. Introduction

Analysis of dynamically loaded structures requires, due to the uncertainties related to loading 
and material description, traditionally, stochastic analysis when the calculation is based on 
experimentally obtained statistical characteristics of some quantities. In case of earthquake, it 
is quite impossible to obtain such characteristics at the location where the analysis structure is 
situated. Then, some kind of interpolation needs to be assumed which already may cause 
errors in the calculation.  

This paper shows a case of dynamic structural analysis based on the fuzzy set theory (Zadeh, 
1965), which may serve as an alternative method the analyses based on the statistical 
approach. The material parameters are considered to be fuzzy quantities with a given 
distribution, i.e. fuzzy numbers with a desired shape of the membership function (Valliapan & 
Pham, 1993). The dynamic analysis is, then, performed with help of the fuzzy arithmetics on 
either the so-called α-cuts or computation-efficient (L,R) numbers (Kaufman & Gupta, 1985). 
In order to further improve the computational efficiency, inspired by (Akpan et al., 2001), the 
concept of a surface response function (Bucher et al., 1988; Rajashekhar & Ellingwood 1993) 
is utilized. This approach is demonstrated in an illustrative example of a 2D frame where the 
effect of uncertain material parameters transpires in corresponding distributions of natural 
modal shapes and natural frequencies of an analyzed two-dimensional frame. A methodology 
for a possible application to seismic design is also explained. 
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2. Dynamic finite element analysis 

The finite element method applied to dynamical problems of structures results into the form 
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where M denotes the mass matrix, C denotes the damping matrix, K denotes the stiffness 
matrix, f(t) denotes the load vector and r(t) is the vector of nodal displacemnts which are 
computed. t stands for time. Equation (1) represents a semidiscrete problem where the spatial 
coordinates are discretized while the time is still assumed to be continuous (Bathe, 1996; 
Bittnar & Šejnoha, 1992). 

The analysis of natural frequencies (eigenvalues) and natural mode shapes (eigenvectors) 
of an undamped structure is based on the simplified relation  
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The nonzero vector v is the eigenvector containing the natural mode shapes and ω0 stands for 
the natural frequency. Equation (2) represents an generalized problem of eigenvalues. The 
most common method of solution of such problems is the subspace iteration (Bittnar & 
Šejnoha, 1992). 

3. Fuzzification of dynamic finite element analysis 

The uncertainty, which is present in input parameters, can be tackled with help of the fuzzy 
set theory (Zadeh, 1965). In this theory, the uncertain quantities are defined in terms of fuzzy 
sets. Unlike in the classical set theory, here a membership of an element to a fuzzy set also 
assumes the values between 0 and 1, where 0 means ''does not belong'' and 1 means 
''definitely belongs'' to a fuzzy set. Usually, the fuzzy sets represent vague verbal evaluation. 
In cases when a fuzzy set represents a numeral, it is called a fuzzy number. 

Fuzzy numbers

The notion of a fuzzy number arises from the experience of the everyday life when many 
phenomena which can be quantified are not characterized in the terms of absolutely precise 
numbers. Fuzzy numbers are fuzzy sets which are defined on the set of real numbers. Their 
membership function assigns the degree of 1 to the central, also called nominal, modal or 
mean, value and lower degrees to other numbers which reflect their proximity to the central 
value according to the used membership function. The membership function should thus 
decrease from 1 to 0 on both sides of the central value. Such fuzzy sets are called fuzzy 
numbers. 

Fuzzy arithmetic

A fuzzy arithmetic operation depends on the definition of a fuzzy number. In the cases 
when fuzzy numbers are defined by a set of α-cuts, the problem of fuzzy arithmetic is reduced 
to the well-known arithmetic operations on intervals, which are applied to each α-cut. 
Implicitely, this means a sequence of binary combinations on each α-cut in order to obtain the 
minimum and the maximum value for each α-cut. The finite element method converts a 
problem into a system of linear equations, in this case a system of fuzzy linear equations, 
which comprises an extensive number of arithmetic operations. This fact makes the 



formulation in the above terms merely unsolvable due to the number of all necessary binary 
operations.  

To eliminate the drawback of the α-cut formulation, new techniques for solving fuzzy 
linear equation systems have been developed, e.g. (Bulckley, 1991). However, these 
techniques are not easily applicable to robust problems, such as the fuzzy dynamic finite 
element analysis. Therefore, another technique for reducing the large number of binary 
combinations, originally developed for other problems, e.g. statistical analysis, was exploited. 

Response surface function

Fuzzy analyses, as well as stochastic analyses, suffer from non-occurrence of analytical 
solutions in the case of non-deterministic input data. This situation can be remedied by the 
following. Let Xx

~~ ∈  je denote the vector of input data from the space of input data X
~

 and 
Yy
~~ ∈  denote the vector of output data from the space of output data Y

~
. Both, stochastic and 

fuzzy, analyses require the knowledge of response which can be written 
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where F denotes the response of a system (structure) to the input data collected in the vector 
x~ . This represents a mapping from the space  X

~
 to the space Y

~
. The non-occurence of 

analytical solution requires application of a suitable numerical method which discretizes the 
problem and solves it numerically. The space X

~
 is discretized by an n-dimensional space, 

X , and similarly the space Y
~

 by an m-dimensional space, Y . A stochastic analysis based on 
simulation methods generates thousands or millions of samples of input data (the vectors x ) 
and then the deterministic computation follows. The fuzzy analysis based on α-cuts requires 
computation of all combinations of input data which also leads to thousands or millions of 
samples. Both approaches yield the response of a system based on a huge amount of output 
data (thousands or millions of the vectors y ) obtained from many executions of standard 
(deterministic or crisp) solutions. 

In order to reduce the necessary number of computation runs, the concept of a response 
surface function has been used many times. The basic idea of the response function is to 
approximate the operator F by a suitable function which should be as simple as possible. The 
function for the k-th output parameter can be written in the form 
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where the superscript identifies an output parameter and n denotes the dimension of the space 
of the input data, X . The unknown coefficients are obtained from the least square method in 
the following way. Let the set of input parameters contain s samples. Each sample is located 
in the vector ][ix , where the superscript identifies a sample. The standard computation gives 
output data, which are collected in the vectors ][iy . The coefficients of the response function 
minimize the following expession 
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In many cases, it is not necessary to use the quadratic terms. Considering only the linear terms 
simplifies further computations. 



4. Numerical example 

As an example, the natural frequency analysis of a two-dimensional frame with four floors 
made of reinforced concrete is considered. The overall height of the frame is 16 meters and 
the width is 5 + 5 meters. The dimensions of beams and columns are identical (0.5 x 0.5 m). It 
is assumed that the building was erected in four consecutive lifts. Each lift consists of placing 
concrete in three columns and in the beam which connects the upper ends of the columns. 
Therefore, it is further assumed that there are only four types of concrete whose composition 
can possibly differ. The influencing material parameters are the modulus of elasticity, E and 
the density, ρ. E a ρ are fuzzy input parameters with nominal values of 30 GPa and 2500 
kg/m3, respectively, which can change by ± 10% and with a linear membership function 
(triangular fuzzy numbers).    

Fig. 1 Mode shape 1 

For our illustrative purposes, we need 125 response surfaces functions to describe the first 
five natural vibration modes, i.e. a response surface function to express each natural 
frequency and the horizontal and vertical displacements in each joint (three joints on each of 
the four floors) for each natural mode shape. In order to obtain sufficient input and output 
data for calculation of the coefficients of the response surface functions it was decided to take 
three values (minimum, modal value, maximum) for each material parameter, E and ρ, that 
means 423 ×  (=6561) independent runs of the dynamic finite element analysis. The specific 
form of Equation (4) in this example was 
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The  first  four mode  shapes  are  shown in  Figs. 1  to 5  where the dotted  lines represent  all 
possible envelopes of response, in other words, the minimum and maximum values, which 
correspond to the values obtained for α-cuts α=0). The finite element model of this frame 
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discretized each frame section (beam and column) by five beam elements,  however,  only  
the  joint  displacements  are  shown.  This  is  why   the  fifth mode shape  is  not shown since 
there was no  significant difference between the fourth and fifth mode shapes. In Fig. 2, a 
section of the frame is enlarged and the vertical displacements are 1000 times increased 
compared to the horizontal displacements so that one can see the distribution of possible 
displacements of the frame. The distribution of the first five natural frequencies is shown in 
Fig 6. It  was  observed  that  the   response  function  gives  very good  results   for  dominant 

Fig. 2 Enlarged section of mode shape 1 

Fig. 3 Mode shape 2 



Fig. 4 Mode shape 3 

Fig. 5 Mode shape 4 

displacements  (at point A, which is the top left joint) in lower natural mode shapes, which are 
important for seismic design. For vertical displacements, which do not play an important role 
in seismic design (at point B, which is the intermediate joint of the first floor), the response 
function could not fit the proper shape of the membership function, which is evidenced in Fig. 
7.  

B 



Fig. 6 Distribution of natural frequencies 

Fig. 7 Distribution of two displacements 

5. Possible application 

In the design of earthquake resistant structures, it is essential not to neglect any uncertainty as 
it may lead to an erroneous conclusion due to the dynamic simulation which may amplify 
such uncertainty beyond all limits. For those reasons it seems reasonable to express uncertain 
numerical data in terms of fuzzy numbers and use them as such in analyses to cover all 
possible solutions. 
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In the previous section, an approach to natural vibration analysis was shown which 
provides input data for further analyses considering, e.g. earthquake induced vibrations. The 
spectral-analysis based methods require only maximum values obtained for each natural mode 
for evaluation of excited vibration. Therefore, it is desirable to verify whether these values 
can be satisfactorily expressed by surface response functions which were obtained only by 
binary combinations of material parameters with three values (minimum, modal value, 
maximum). The resulting surface response function was also obtained for five values, 
corresponding to the α-cut values with α equal to 0, 0.5 and 1, however, that already meant 

425 ×  (=390625) independent runs of the dynamic finite element analysis. The improvement 
was negligible, moreover, compared with the computational effort it proved truly 
unnecessary.  

6. Conclusions 

In this paper, it was shown that the fuzzy dynamic finite element method can be satisfactorily 
supplemented with the surface response function concept which considerably increases the 
computational efficiency. It was shown that input and output data collected through the binary 
combinations of only three values (minimum, modal value, maximum) for all varying 
material parameters yields surface response functions with the errors up to 5 % from the true 
results for dominant, and hence imporant. 
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