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Summary: During the last decades, the finite element method has become the
most powerful structural analysis tool and it allows using of more and more so-
phisticated material models. These describe real material very correctly, but the
computational cost of an analysis with such models is overly high. Good example
of this fact is concrete - one of the most widespread building materials. In this
paper, authors focused on the microplane model. This model describes rather non-
linear behaviour of concrete very truly, the computational cost, however, is insofar
high making wider usage in practical engineering not possible. That is why we
proposed an adaptive analysis of RC concrete frames with microplane joints. Ini-
tially, a frame is composed of only beam elements with nonlinear behaviour. In
the course of computation, parts which exceeded suitable criterion are replaced by
three-dimensional microplane model. At the moment of collapse, the microplane
model is used only in some sections of the frame (especially close to joints), so
computational effort is smaller compared to frame modelled completely by 3D ele-
ments.

1. Introduction

In this paper the use of the microplane model in an analysis of reinforced concrete frames is
discussed. The microplane model is generally a constitutive, fully three-dimensional model ca-
pable to describe concrete in its very complex behaviour. Thanks to its qualities, the microplane
model is convenient for simulations of experimental results [1] and comprehensive analysis of
various structures from concrete. In particular, we focused on RC frames where we can analyse
ultimate displacement, creation of plastic hinges etc. However, wider usage of this model is
not possible because of high computational cost. That is why we proposed below discussed
adaptive analysis.

It is based on a geometrical model of frame compound of beams and 3D elements (bricks).
The microplane model is applied only for bricks, which will be used for segments of the frame
with significant nonlinear strains. The rest of the frame will be modelled by beam elements
with fibered cross-section, which partly allows simulation of nonlinear behaviour of material.
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Due to nonlinearity of the microplane model, the loading is applied in an incremental man-
ner. In the first loading steps, the whole frame is formed only by beam elements. In next
steps, cross-sections of all beams are monitored and when strain state of some concrete fibres
leaves elastic part of strain-stress diagram, those beam elements are replaced by fully three-
dimensional model of beam with microplane material model. This approach enables to achieve
required loading level with less number of elements thus solving of the problem takes less time.
However, the solution time of nonlinear static analysis is still too large, so for large problems
we have to use explicit dynamic solver. Finally, we conclude our paper by numerical example.

2. Microplane Model

The classical constitutive modelling approach is based on a direct relationship between strain
and stress tensors and their invariants. Contrary to it, constitutive relations of the microplane
model for concrete are formulated in terms of strain and stress components on planes of arbi-
trary spatial orientation, so-called microplanes. This approach excels in conceptual simplicity
and allows straightforward modelling of anisotropy and other features related to planes of dif-
ferent orientation. The penalty to be paid is the great increase of computational effort. Although
the microplane theory was originally proposed for plastic behaviour of metals, it can be gener-
ally used for any type of material including concrete [2, 3]. The relationship between micro and
macro level is obtained by projecting strain tensor to the particular microplanes (so-called kine-
matic constraint) or by projecting stress tensor (static constraint). Then constitutive relations
between microstrains and corresponding microstresses are evaluated (the constitutive relations
can be defined in different ways, depending to it we distinguish four models M1, M2, M3 and
M4). The missing link (between micro and macro stresses for kinematic constraint and between
micro and macro strain for static constraint, respectively) is obtained by application of the prin-
ciple of virtual work. Such kind of a material model is capable to describe the triaxial nonlinear
behaviour of concrete including tensional and compressive softening, damage of the material,
different types of loading, unloading or cyclic loading.

The microplane model is numerically extremely demanding - computation of the stress ten-
sor in a single integration point involves the strain projection to microplanes, the evaluation of
local microplane constitutive laws (which may lead to iteration) on each microplane and the ho-
mogenization procedure for computing the overall stress tensor. Moreover, the tangent stiffness
matrix can be hardly obtained. For some microplane formulations, there is no direct formula
and the only possibility is to construct stiffness from its definition. But this is a very expensive
procedure. Due to the lack of tangent stiffness one can use the initial elastic matrix for the
whole analysis, but this will lead to a very poor convergence. Therefore, the use of implicit
methods, which require the stiffness matrix, is cumbersome, due to an extremely slow iteration
process.

That is why dynamic relaxation method based on explicit time integration is more efficient.
In addition, for nonlinear problems it is convenient to use optimum or quasi-optimum loading
minimising inertia forces.



3. Computational Scheme

1. Brief review of the central difference explicit integration method This method is based
on the direct integration of the governing equilibrium equation. The equation in time t can be
written

Mr̈t + Cṙt + F t(rt) = Rt , (1)

where M and C represent the mass and damping matrices of the discretized system, respec-
tively. Rt is the load vector and F t is the vector of real internal forces at time t. The F t

vector is evaluated using constitutive relations, the microplane model in our case. The new val-
ues of displacement, velocities and accelerations at time t + ∆t are computed from discretized
equilibrium equation at time t using the known values of displacements r, velocities ṙ and ac-
celerations r̈ at time t. As assumption about the evolution of these characteristics in interval
〈t, t + ∆t〉, a simple differential scheme is used

ṙt = (rt−∆t + rt−∆t)/(2∆t) , r̈t = (rt+∆t − 2rt + rt−∆t)/∆t2 . (2)

Substituting Eqs (2) into Eq. (1) and expressing it in an incremental form, we obtain the
following relation
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∆rt−∆t , (3)

where ∆rt = rt+∆t −rt. From this equation, the unknown displacement increment ∆rt can be
computed. The corresponding vectors of velocities and accelerations can be easily computed
using

ṙt = (∆rt + ∆rt−∆t)/(2∆t) , r̈t = (∆rt − ∆rt−∆t)/∆t2 . (4)

Particularly, the use of diagonal mass matrix M is assumed. If dumping matrix C is ex-
pressed in the special form of Rayleigh dumping C=αM (α∈�), one does not need the stiff-
ness matrix. Typically, the nonequilibrated internal forces are applied as loading in the next
time step. These choices significantly simplify the solution of the problem and lead to a very
efficient computational scheme, which can be parallelized in a straightforward way.

2. Dynamic relaxation using optimum load time history for nonlinear analysis Dynamic
relaxation is used in dynamic structural analysis programs based on explicit time integration
schemes to make static analysis possible. The solution of the static problem is found as the ulti-
mate settled state of the associated transient dynamic problem. By applying dynamic relaxation
we obtain efficient algorithm. Nevertheless, there are drawbacks obstructing the efficient use of
this method in nonlinear problems. Conventional dynamic relaxation employs the step function
for the load time history. Inertia forces play a significant role in the initial phase of motion
before they decay due to damping. In problems involving nonlinear path dependent materials,
the final settled state may then differ from the state that would be reached if proportional static
loading were applied. Both drawbacks can be eliminated if a slow continuous loading is used
instead of the step load, in order to keep the inertia and damping forces small from the very
beginning. If a fixed time interval and an ultimate load level are given, the inertia and damping
forces depend on the load time history.



Required formula for calculation of the load time history was proposed in [4]. Author
minimised here the vector of inertia and damping forces

yt = Mr̈t + Cṙt = ptP − F t . (5)

This equation follows directly from Eq. (1). The vector P determines the space distribution
of the loading (known) and p(t) is a time-dependent factor of loading representing wanted load
time history. If multi degree of freedom nonlinear undamped systems are considered the fol-
lowing equation is obtained

pt =
1

P T M−1P
F T

t M−1P + c
τ − t

τ
, (6)

where τ is total time and c is a parameter which determines the rate of the loading process and
which is evaluated from

P T rτ =
cτ 2

3
P T M−1P . (7)

The vector rτ or the scalar P T rτ has to be guessed.

4. Geometrical Model

Because a complicated finite element mesh is required for discussed model, we had to create
special preprocessor capable to generate mesh consisting of beam elements, bricks and trusses.
In addition we have to connect these elements into one compact unit.

1. Mesh of reinforcement In order to create a correct and flexible model of 3D parts of a frame,
it has to be compound of two independent meshes. The primary mesh, built by 3D elements
(here hexahedrons ∼ bricks are used), represents concrete part of frame. Because microplane
material constants have to be fitted according to experiments for one specific element size, all
bricks have to be identical in size. The secondary mesh is built by truss elements and represents
the reinforcement.

To guarantee bond between concrete and reinforcement, both meshes have to be intercon-
nected. For usual models this problem is solved during the creation of the primary mesh. It is
generated so the primary mesh is intersected by reinforcement exactly in vertices of bricks and
nodes of the secondary mesh can be identified with the nodes of the primary one (see Fig. 1).

Figure 1: Brick and truss elements with
shared nodes.

Figure 2: • - master node, ◦ - hanging node.



In regular mesh, 3D elements are mostly intersected besides of vertices. In such case, inter-
action between reinforcement bars and concrete bricks is ensured by hanging-nodes. It means
that behaviour of a node of the secondary mesh is subordinate to behaviour of several nodes of
the primary mesh. Practically we have to find all intersection points of a reinforcement bar and
sides (edges) of bricks. Hanging nodes lie at these points and master nodes are identical with
vertices of corresponding sides (edges) (see Fig. 2).

At first, the preprocessor finds all hanging nodes and divides rods of the secondary mesh,
which are given as line segments or polygons, into elements. For each hanging node it finds
its master nodes and computes natural coordinates inside corresponding brick, side or edge. In
the case of a large amount of elements, it would be too slow to find hanging nodes going over
all elements and finding possible intersection with each reinforcement polygon. That is why
the preprocessor firstly maps complete connectivity of the primary mesh. Next it goes over
each element and finds a master element for the first node of the polygon. Now the following
intersection is searched always on elements adjacent to the last intersected (master) element
only. In this manner it continues along the polygon to its end.

2. Hanging nodes When given element (side or edge of element) and node interacts (they
have identical displacement), but the node cannot be identified with an existing node on the
element, we can treat this node as a hanging node and nodes of the element are called master
nodes. Displacement of master nodes up is obtained from the solution of governing equations
and displacement of hanging node uhn is computed from element interpolation functions N

and corresponding nodal displacement vector up by

uhn = Nup . (8)

Analogically we can handle other quantities (loading etc.).

3. Rigid arm Connection between a beam element and a part of the frame modelled by bricks
is formed by rigid arms. A node at the end of the beam is called master node and nodes on
corresponding surface of the 3D part of the frame are slaves. Displacement vector of master
node um is obtained from the solution of governing equations and displacement vector of the
slave node us is computed from um, transformation matrix and the distance between the master
and the slave node.

5. 3D Beam Element

In those parts of a frame where behaviour of concrete in pressure is only slightly nonlinear
beam elements with fibred cross-section are used. This cross-section is divided into a number
of fibres. Each fibre can adopt different material model and they can be in different stress-strain
state, so internal forces and geometrical characteristics of cross-section have to be integrated
after each change of loading. For fibres representing rods of reinforcement common elasto-
plastic material model is used. For fibres representing concrete we had to create a special
material model. In pressure it is elastic with secant elastic modulus Eb = 0.85 Ein , where Ein is
the initial elastic modulus. In tension the material is elasto-plastics with softening - it simulates
real behaviour of concrete (see Fig. 3).

After each loading step a check is performed to detect beam elements with fibres in consider-
ably nonlinear state. There are only two nonzero stress components σx and τxy at an integration
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Figure 3: Stress-strain diagram.

point of a fibre. Several stress-strain diagrams were obtained for various ratios σx/τxy using
a single brick model with microplane material and a single fibre model with “beam” material
model. For each ratio we can find limit stress σlim

x (τ lim
x ) which can be considered as slightly

nonlinear. The limit is approximately found as stress for which prescribed percentual energy
error e is reached:

e = 100Wb/Wm. (9)

where Wb and Wm are carried out works for fibre and brick, respectively, with same value of
stress. Set of limit stresses forms boundary curve.

6. Example

For numerical verification of the proposed method a two story frame loaded by both vertical
and lateral uniformly distributed load was used. The frame geometry is shown in Fig. 4. The
employed constitutive model is based on microplane model M4. The constitutive properties for
brick of size 60x60x60 mm are following: density ρ = 2500 kg/m3, dumping coefficient α = 0,
Young modulus E = 41039 GPa, Poisson coefficient ν = 0.18, M4 parameters k1 = 0.000228,
k2 = 500, k3 = 15, k4 = 150. The solution started with the initial mesh 1, which was five
times adapted (see Figs 5-10). After each modification the computation was started from the
beginning again. Because of low number of elements of primary meshes, using nonlinear static
analysis in first steps was more efficient than using dynamic relaxation. To keep solution con-
sistency we employed nonlinear static analysis for all steps of the solution, although for final
mesh it was time demanding. Dynamic relaxation analysis was employed only for the last
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Figure 4: Frame geometry, loading f=0.01MN/m, full mesh - 0 beams, 7360 bricks,
1760 truss elements.

mesh. Considering that the dynamic solution is significantly faster than static one, we can rec-
ommend nonlinear static solution for research of initial behaviour of frames. For investigation
of structures subjected to ultimate load we recommend the dynamic solution.

7. Conclusion

Microplane model is computationally very demanding. RC frame structures formed only by 3D
elements with microplane model put high requirements even on today’s powerful computers.
The proposed method implemented into an existing object oriented finite element environment
is able to reduce number of 3D elements with demanding material model and at the same time
retains computational accuracy of the microplane model.
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Figure 5: Mesh 1, 352 beams. Figure 6: Mesh 2, 340 beams 184 bricks, 68
truss elements.

Figure 7: Mesh 3, 325 beams 436 bricks,
152 truss elements.

Figure 8: Mesh 4, 302 beams 852 bricks,
270 truss elements.

Figure 9: Mesh 5, 271 beams 1452 bricks,
432 truss elements.

Figure 10: Mesh 6, 252 beams 1852 bricks,
518 truss elements.
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