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Summary: Modifications of reinforcement learning algorithm, so called
continuous action reinforcement learning automaton (CARLA), are presented in
this contribution. Automaton learning algorithm is based on rewarding that
gradually evolves the set of probability densities. This set is consequently used for
action set determination. Modifications consist of improving learning parameters
based on learned values. Thereby higher values of probability density near the
best action are reached and therefore the variance of chosen actions is lower than 
original. The influence of modifications is proved by simulation study describing
learning and behavior of asynchronous electromotor scalar control. Standard
PSD controller is used whose parameter values represent actions of three
independent automata. The goal of on line learning process is to minimize the
mean square of control error. Here described modifications of algorithm allow
the improvement of quality of revolutions control with preserving basic algorithm
characteristics.

1 Introduction
Despite the progress in development of control systems, the general problem of setting their
parameters still remains unsolved. It is possible to calculate the parameters easily, when
mathematical model of controlled system is known. In the other cases the analogy with
similar system or experts practice are used. When this approach fails the appropriate method
of artificial intelligence can be used. One of these methods is CARLA (e. g. [3]). Its function
was successfully proved by practical applications (e. g. [2]) and results prove assumption that
better results can be reached by CARLA method.

The appropriate learning parameters [1] improve the behavior of CARLA method. The
problem is that different characteristics are important in different phases of learning. First the
high speed of learning, later the precision of learned value is needed. These two demands
contradict each other when CARLA method is used. But both of them can be achieved by its
modification.
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2 Approach 

CARLA method [1, 2, 3] consists of six steps: 

 
random selection of action, 

 
action application to the system, 

 
time delay, 

 

calculation of action cost, 

 

calculation of performance and 

 

modification of probability density. 

Actions are selected randomly from continuous interval. Selection is based on learned 
probability density. The action applied is to system after selection. It can mean setting the 
value of parameter. Following time delay should be as short as possible, but must be long 
enough so that influence of action to system can be seen. 

Next the cost of action which represents as quality criteria is calculated. CARLA method 
minimizes the cost. The performance is calculated based on the cost. It is value expressing 
improvement reached by applied action. Finally the probability density is updated so that 
successful action and actions from its neighborhood are selected more often. This step 
represents learning method.  

It seems that big improvement of learning speed can be achieved by decreasing time delay. 
But practical improvement is minimal. Minimum of time delay is function of system. Because 
this, it can t be easily decreased. Much bigger improvement of learning speed can be done by 
changing the way of modifying probability density. 

Probability density in iteration k is described by function f(x,k), which to every action from 
continuous interval <xmin;xmax> assigns probability of its selection. Probability of actions 
selection which don t fall to this interval equals to zero. The way of modifying probability 
density by CARLA method is following:   
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Coefficients gh and gw affect learning speed and precision of learned value [1]. By their 
change during learning it is possible to achieve first increased speed of learning and then 
bigger precision of learned value. 
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Figure 1: Ideal learning progress  

3 Implementation 

As was said above high learning speed is desired. So the initial values of coefficients gh and 
gw are chosen to maximize learning speed. When optimal action is approximately found, their 
values are modified to increase the precision. As can be seen on figure 1, the value of 
probability density function is increasing in neighborhood of optimal action during learning 
progress. The values are decreasing to zero in the rest of interval. So it is possible to use the 
size of interval <x min;x max>, where value or probability density is not near zero, as measure 
of learning stage. The interval is defined as follows:   
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Value of  constant was determined by experiments. Its recommended value is 10-4. 



 
Because values of coefficients gh and gw should be proportional to size of interval 
<x min;x max> it is possible instead of changing their values equivalent method and change 
equations (3) and (4) by the following way:   
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This modification theoretically leads to zero variance of selected actions. But in practice the 
limitation is induced by limited memory size. 

It is not possible to save probability density function f(x,k) exactly for whole interval 
<xmin;xmax> because infinite memory would by needed, so limited number of samples is used. 
Values between samples are computed by (linear) interpolation. 
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Figure 2: Influence of number of samples (N) to probability density function ( ,h wg g konst )  

Minimal variance of selected actions is proportional to the distance between two adjacent 
samples used to save the probability density function. Decreasing the distance decreases  the 
minimal reachable variance. 

Decreasing the distance of two adjacent samples can be achieved by three different ways: 

 

increasing number of samples 

 

decreasing size of interval <xmin;xmax> 

 

change of position of samples 



 
Too high number of samples is not suitable because it leads not only to increasing of memory 
requirements, but as well to increasing of computing time. Decreasing size of interval 
<xmin;xmax> increases probability so that optimal action needs not lie in it. So the best way for 
decreasing the distance of two adjacent samples is the change of their position. One way of 
their positioning looks as follows. 

Probability of selecting actions from big part of interval <xmin;xmax> equals approximately to 
zero after learning. So in this part of interval samples are not needed. Two samples are left on 
borders of interval and the rest of samples is arranged in appropriate way at the part of 
interval, where probability of action selection is not near to zero. For example as follows:   
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xi is position of i-th sample. x min, x max are defined by (5) and (6). Experimentally determined 
value of coefficient 

  

for this method of positioning is 10-6.  

4 Results 

Function of modified CARLA method was proved by simulating control of asynchronous 
motor. Motor was controlled by discrete regulator and CARLA method was used to setting of 
regulator parameters. 

The classic discrete PSD regulator was used for control:  
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Figure 3: Schema of simulated system  



 
Assumption that modified CARLA method can lead to better results than unmodified one, 
was confirmed (see fig. 4). The modification eliminated oscillations of revolutions induced by 
too high variance of selected values of Ks coefficient. 
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Figure 4: Behavior of simulated system  

Modification decreased the variance of selected values of Ks coefficient (see table 1). This 
leads to improvement of control. Variance of remaining coefficients stayed unchanged, 
because its decreasing does not lead to control improvement.  

Table 1: Variance of selected values of regulator parameters  

Kp Ks Kd 

CARLA 3,66E-05

 

1,23E-05

 

1,61E-07 

Modified CARLA 8,73E-05

 

1,84E-08

 

1,24E-07 

 

High decrease of selected variance values for Ks parameter with simultaneous negligible 
variance change of selected values for remaining parameters leads to conclusion, that quality 
of control is most dependent on summative part of regulator. 

This conclusion is proved by means of selected values. Mean value of parameter Ks remained 
practically unchanged. Mean values of other two parameters was adapted to decreased 
variance of selected values of Ks parameter.  

Table 2: Mean value of selected parameters  

Kp Ks Kd 

CARLA 0,085088191

 

0,54974466 0,001625666

 

Modified CARLA 0,037049342

 

0,549577577

 

0,000998907

 



     

Figure 5: Progress of learning of probability density  

5 Conclusion 

As verified, earlier CARLA method is capable to improve behavior of controlled system. In 
spite of parameters learned by CARLA method should be optimal, it is still possible to 
improve them. The modification above is capable to learn more precise parameters without 
negative impact to method behavior. Also stops decreasing of variance of selected parameters 
when it is not leading to improvement and by this prevents overlearning. This modification is 
not the only possible, but it leads to improvement without negative impact to some of method 
attributes (speed of learning, noise resistance, ).  

6 Acknowledgement 

This work was done with the support of research project MSM 0021630518 "Simulation 
modeling of mechatronics systems".  

7 Literature 

[1] B ezina, T., Turek, M.: Use of Continuous action reinforcement learning automata for 
asynchronous electromotor control. Engineering mechanics 2004, 53-54, CDROM. 

[2] Howell, M. N., Best, M. C.: On-line PID tuning for engine idle-speed control using 
continuous action reinforcement learning automata. Control Engineering Practice 8, 2000, 
147-154. 

[3] Howell, M. N., Frost, G. P., Gordon, T. J.,Wu, Q. H.: Continuous action reinforcement 
learning applied to vehicle suspension control. Mechatronics, 7(3), 1997, 263-276. 



 
[4] Howell, M. N., Gordon, T. J.: Continuous action reinforcement learning automata and 
their application to adaptive digital filter design, Engineering Applications of Artificial 
Intelligence, 14(5), 2001, 549-561. 

[5] Najim, K., Poznak, A.S.: Learning Automata - Theory and Applications. Pergamon Press, 
Oxford, 1994. 

[6] Narendra, K.S., Thathachar, M.A.L.: Learning Automata: An Introduction, Prentice Hall, 
London, 1989. 

[7] Ong, Ch.M. (1998) Dynamic Simulation of Electric Machinery, Prentice Hall, New 
Jersey. 

[8] Wu, Q. H.: Learning coordinated control of power systems using interconnected learning 
automata. International Journal of Electrical Power and Energy Systems, 17(2), 1995, 91-99. 


