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Summary: The paper deals with the numerical simulation of a turbulent compres-
sible fluid flow through the two-dimensional model of a gap caused by the incorrect
contact of screw surfaces. The incorrect contact of screw surfaces considered in this
paper is caused by a large parallel displacement of the axis of one of the surfa-
ces. Numerical solution of the nonlinear conservative system of the Favre-averaged
Navier-Stokes equations is obtained by means of the cell-centred finite volume for-
mulation of the explicit two-step TVD MacCormack scheme proposed by Causon
on a structured quadrilateral grid. To simulate the turbulence effects the algebraic
Baldwin-Lomax turbulence model is implemented into the own developed numerical
code.

1. Introduction

The most important part of the screw machines, i.e. screw compressors or expanders that create
in combination with compressors the screw engines, is the work space, where the fluid is
compressed. It has a complicated geometry which changes during the motion of two rotors. The
processes, which take place in the work space and in the gaps on its boundaries, have a great
influence on the performance of the screw compressor, especially with regard to its internal
efficiency. The knowledge of the processes in the gaps on the boundaries of the work space
enables to make reasonable estimates for the mass flow rate and to define the loss of the medium.
Therefore it is necessary to investigate the details of the leakage flow.

In (Vimmr & Švı́gler, 2004), the laminar computation of the leakage flow through the two-
dimensional model of the gap caused by the incorrect contact of screw surfaces for the pressure
ratio pinlet /p outlet = 2 was presented. It was assumed that the leakage flow in this gap of
0.1 mm height, which represents a very narrow channel where the reference Reynolds number
is Re ∞ = 3900, could be laminar. But from the obtained results it seems that this assumption of
the laminar flow computation is not exactly correct. Therefore the aim of this paper is to include
the effects of turbulence in a flow field and to perform the turbulent flow computation through
this gap.
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2. Formulation of the problem

The incorrect contact of screw surfaces σ2 and σ3 caused by a large parallel displacement
∆r

O3
= [∆x

O3
,∆y

O3
, 0] of axis o3 of the surface σ3 was solved and presented in (Vimmr &

Švı́gler, 2004). The surface σ3 is displaced in a new position σ∆3 , Fig. 1. The first contact of
surfaces σ2 and σ∆3 takes place in the cross section τ , which is defined by ϕP

3 = min{jϕP
3 },

j ∈ (1, m), where ϕP
3 is the angle of rotation of the surface σ∆3 towards the contact position of

surfaces σ∆3 and σ2. For the numerical solution of the incorrect contact of screw surfaces the
following basic values were considered: the axis distance aw = 100 mm, gear ratio i32 = 3

2 , the
helix angle on the rolling cylinder of both rotors γ = 45◦, radius r

k
= 125 mm of the circle

k3, displacements ∆x
O3
= 0.1 mm and ∆y

O3
= 0.1 mm of axis o3. The incorrect contact of

surfaces σ2 and σ∆3 is demonstrated in Fig. 2, where CH32 is the contact point.

Fig. 1 Creating of the incorrect contact
of surfaces σ2 a σ3.

Fig. 2 The incorrect contact of surfaces σ2 a σ∆3 .

This situation should be well observed in the cross section for p3L = − 68 mm of surfaces
σ2 and σ∆3 with the incorrect contact, Fig. 3, where the detail of the gap caused by this incorrect
contact of screw surfaces is shown on the right. The contact of surfaces in the contact point
CH32 takes place in the cross section for p3L = 34,04 mm.

Fig. 3 The cross section for p3L = − 68 mm of surfaces σ2 and σ∆3 with the incorrect contact.



The computational model of the gap caused by the incorrect contact of screw surfaces in
the cross section for p3L = − 68 mm was created in (Vimmr & Švı́gler, 2004), where the
profile p∆3 of the surface σ∆3 is considered as the circle k3(S, r

k
), Fig. 1, and the profile p2 of

the surface σ2 is replaced by an osculating circle. The profile p2 creates the upper curve of the
planar computational model of the gap, Fig. 3. This computational model of the gap caused by
the incorrect contact of screw surfaces in the cross section for p3L = − 68 mm can be modelled
by a two-dimensional bounded domain Ω ⊂ R2, occupied by a calorically perfect gas, with
the Lipschitz boundary ∂Ω = ∂ΩI ∪ ∂ΩO ∪ ∂ΩW , where ∂ΩI is the inlet and ∂ΩO the outlet

section of the computational domain Ω and ∂ΩW = ∂Ωp2
W ∪ ∂Ωp∆3

W are impermeable walls of the
computation domain corresponding to the osculating circle p2 and to the profile p∆3 .

In (Vimmr & Švı́gler, 2004), the laminar computation of the compressible fluid flow through
this gap for the pressure ratio pinlet/poutlet = 2 was presented. It was assumed that the leakage
flow in this gap of 0.1 mm height, which represents a very narrow channel where the reference
Reynolds number Re∞ = 3900, could be laminar. But from the obtained results, (Vimmr &
Švı́gler, 2004), it seems that this assumption of the laminar flow computation is not exactly
correct. Therefore it is necessary to include the effects of turbulence in a flow field and to
perform the turbulent flow computation through this gap.

3. Mathematical model of a turbulent compressible fluid flow

Let Ω ⊂ R2 be a computational domain with a boundary ∂Ω and (0, T ) a time interval. In
the laminar case, the motion of a compressible, viscous, heat-conducting, Newtonian fluid is
described by the well-known nonlinear conservative system of the Navier-Stokes (NS) equations
derived from the integral form of the conservation laws for mass, momentum and total energy in
Eulerian description, (Vimmr, November 2003). In order to obtain the governing conservation
equations for turbulent flows, it is convenient to replace the instantaneous quantities in the
system of the NS equations by their mean and their fluctuating values.

If Φ(y, t) is any time dependent flow variable, two different types of averaging of Φ(y, t)
can be defined:

• conventional time averaging introduced by Reynolds in which the instantaneous flow
variable Φ(y, t) is expressed as the sum of a mean Φ(y, t) and a fluctuating part Φ′(y, t),
so that

Φ(y, t) = Φ(y, t) + Φ′(y, t) , (1)

Φ(y, t) =
1
∆t

∫ t0+∆t

t0

Φ(y, t) dt . (2)

• mass-weighted time averaging suggested by Favre in which the instantaneous flow variable
Φ(y, t) is decomposed into the mass-averaged part Φ̃(y, t) and a fluctuating partΦ′′(y, t),
wherefore

Φ(y, t) = Φ̃(y, t) + Φ′′(y, t) , (3)

Φ̃(y, t) =
%Φ
%

, (4)



where the bar denotes conventional time averaging. Note the important differences bet-
ween the two averaging procedures. In the conventional time averaging, Φ′ = 0 and
%Φ′ 6= 0; in the mass-weighted averaging, Φ′′ 6= 0 and %Φ′′ = 0.

Introducing a conventional time average decomposition (1) of density % and static pressure
p and a mass-weighted time average decomposition (3) of the velocity vector vj , total energy
E per unit volume and thermodynamic temperature T and performing the mass-averaging
operations described precisely in (Vimmr, March 2003), we arrive at the nonlinear system of the
Favre-averaged Navier-Stokes (FANS) equations written in nondimensional conservative form

∂w

∂t
+

2∑
j=1

∂F I
j(w)

∂yj

=
1

Re∞

2∑
j=1

∂FV
j (w)

∂yj

in Ω× (0, T ) . (5)

The column vector w of conservative variables and the vectors F I
j(w) of inviscid and FV

j (w)
of viscous fluxes are given by

w =
(
%, % ṽ1, % ṽ2, Ẽ

)T

, (6)

F I
j(w) =

(
% ṽj, % ṽ1ṽj + p δ1j, % ṽ2ṽj + p δ2j, (Ẽ + p)ṽj

)T

, j = 1, 2 , (7)

FV
j (w) = (0, τ̃1j, τ̃2j, τ̃1j ṽ1 + τ̃2j ṽ2 − q̃j)

T , j = 1, 2 , (8)

where δij is Kronecker delta and

τ̃ij = τ̃ij
lam + τ̃ij

turb ≡ (η + ηt)

(
∂ṽi

∂yj

+
∂ṽj

∂yi

− 2
3
δij

∂ṽk

∂yk

)
, i, j = 1, 2 , (9)

q̃j = q̃j
lam + q̃j

turb ≡ − κ

κ− 1

(
η

Pr
+

ηt

Prt

)
∂

∂yj

(
p

%

)
, j = 1, 2 . (10)

Since the fluctuating component of the molecular viscosity η is usually small, it has been
neglected. The external volume forces are not considered in our case and additional closure
approximations have been postulated. The turbulent shear stresses τ̃ij

turb ≡ − %v′′i v
′′
j in relations

(9) are modelled using the Boussinesq approximation, (Wilcox, 1993), where the concept of a
turbulent (or eddy) viscosity ηt is introduced. The turbulent heat flux vectors q̃j

turb ≡ cp %Tv′′j
in (10) are modelled using a gradient approximation written in a form such as to resemble the
laminar heat flux vectors. For this purpose, a turbulent Prandtl number Prt is defined. A constant
value for Prt equal to 0.9 is often used for wall bounded flows.

Assuming a calorically perfect gas, the static pressure is given by the equation of state

p = % r T̃ = (κ− 1) % cv T̃ ≡ (κ− 1)
(

Ẽ − 1
2

% ṽj ṽj

)
, (11)

where r = cp − cv is the gas constant per unit mass, cp and cv are the specific heats at constant
pressure and volume, respectively and κ is Poisson´s constant. The laminar Prandtl number
Pr = cpη/k is taken to be 0.72 for a calorically perfect gas, where k is thermal conductivity and
Re∞ = %refuref lref/ηref is the reference Reynolds number. It rests to determine the turbulent
viscosity ηt.



For computation of the turbulent viscosity ηt an algebraic Baldwin-Lomax turbulence model
is considered. The description of algebraic turbulence models can be found for example in
(Přı́hoda, 1990; Wilcox, 1993). The Baldwin-Lomax model is a two-layer turbulence model,
based on the mixing-length hypothesis, which is formulated for use in computations where
boundary-layer properties such as the boundary-layer thickness δ, the kinetic displacement
thickness δ∗v and the boundary-layer edge velocity ue are difficult to determine. This situation
often arises in numerical simulation of separated flows. The turbulent viscosity ηt is given by
using a two-layer approach,

ηt =

{
ηti if y ≤ ym . . . the inner layer

ηto if y > ym . . . the outer layer
, (12)

where y is the normal distance from the wall and ym is the smallest value of y for which ηti = ηto .
For the wake region, the inner layer is not defined so we have ηt = ηto .

In the inner layer, ηti , is computed as follows

ηti = % l2mix |ω| , (13)

lmix = γ y FD , FD = 1− e−y+/A+ , ω =
∂ũ

∂y
− ∂ṽ

∂x
, (14)

where γ is the von Karman constant, the mixing length lmix is determined by the van Driest
function FD and ω is the vorticity. The nondimensional space coordinate y+, normal to the wall,
can be written as

y+ =
y

ηw

√
%w |τ̃w| , τ̃w = ηw

∂ũ

∂y

∣∣∣∣
y=0

, (15)

where τ̃w is the wall shear stress in the direction of the flow and the subscript w indicates the
wall quantities.

In the outer layer, ηto , is given by

ηto = % α Ccp Fwake Fkleb , (16)

Fwake = min

(
ymaxGmax , Cwake ymax

(∆V )2

Gmax

)
, Gmax = max

y
(y |ω|FD) , (17)

where ymax is the value of y where Gmax occurs, G(ymax) = Gmax, and ∆V is the difference
between the absolute values of the maximum and minimum velocities within the viscous region
for x = const. For wall bounded flows, the minimum velocity occurs at the wall where the
velocity is zero, then ∆V = (ũ 2 + ṽ 2)1/2max. For shear layer flows, ∆V is defined as the
difference between the maximum velocity in the layer and the velocity at the ymax location, that
is, ∆V = (ũ 2 + ṽ 2)1/2max − (ũ 2 + ṽ 2)1/2ymax for x = const. The Klebanoff’s intermittency factor
Fkleb is given by

Fkleb =

[
1 + 5.5

(
Ckleb

y

ymax

)6]−1

. (18)

The model constants are: γ = 0.4, A+ = 26, α = 0.0168, Ccp = 1.6, Cwake = 0.25,
Ckleb = 0.3.



Finally, the turbulent viscosity distribution across the boundary layer is determined as

ηt = min(ηti , ηto) (19)

and ηti :=∞ for the wake. To initiate the computations, a transition location xtr is specified, and
the initial value of the turbulent viscosity is set equal to zero everywhere within the computational
domain. Subsequently, in regions where x > xtr, the turbulent viscosity is computed from (19)
and updated after each time step.

4. Numerical method

To solve the nonlinear conservative system of the FANS equations (5), the same numerical
method as for the laminar case is used, (Vimmr, November 2003), only the viscous coefficient
is replaced by the sum of the molecular and turbulent viscosities. The turbulent viscosity ηt

is computed by using the algebraic Baldwin-Lomax turbulence model. The advantage of the
algebraic models is that no additional equations have to be solved. The Baldwin-Lomax model
is mathematically simple and its implementation into the own developed numerical code for the
laminar flow computation is easy.

For the discretization of the system of the FANS equations (5) the cell-centred finite vo-
lume (FV) method on a structured quadrilateral grid, (Vimmr, November 2003), is used. Time
integration of the inviscid part of the system (5) is performed by using the FV formulation
of the explicit two-step TVD MacCormack scheme proposed by Causon, (Causon, 1989). The
approximations of the viscous part of the system (5) are added to the predictor and corrector
steps of the MacCormack scheme

w
n+ 12
ij =wn

ij −
∆t

|Ωij|

4∑
m=1

(
fn

m Sx
m + gn

m Sy
m

)
+
∆t

|Ωij|
V isc(wn

ij) , (20)

wn+1
ij =

1
2

{
wn

ij+w
n+ 12
ij − ∆t

|Ωij|

4∑
m=1

(
f

n+ 12
m Sx

m+ g
n+ 12
m Sy

m

)}
+
1
2
∆t

|Ωij|
V isc(w

n+ 12
ij ) , (21)

(TV D)w
n+1
ij =wn+1

ij + dw1nij + dw2nij , (22)

where (TV D)wn+1
ij is the corrected numerical solution at time tn+1 and |Ωij| denotes the face area

of the finite volume Ωij . The Cartesian components fm and gm of the inviscid numerical fluxes
F I

m through the edges Γm
ij , m = 1, . . . , 4, of the cell Ωij at time tn are evaluated as

fn
1 = f(wn

i+1j) , fn
2 = f(wn

ij+1) , fn
3 ≡ fn

4 = f(wn
ij) ,

gn
1 = g(wn

i+1j) , gn
2 = g(wn

ij+1) , gn
3 ≡ gn

4 = g(wn
ij)

and at time tn+ 12
as

f
n+ 12
1 ≡ f

n+ 12
2 = f(w

n+ 12
ij ) , f

n+ 12
3 = f(w

n+ 12
i−1j) , f

n+ 12
4 = f(w

n+ 12
ij−1) ,

g
n+ 12
1 ≡ g

n+ 12
2 = g(w

n+ 12
ij ) , g

n+ 12
3 = g(w

n+ 12
i−1j) , g

n+ 12
4 = g(w

n+ 12
ij−1) .

Sm=
(
Sx

m , Sy
m

)T
are cell side normal vectors to the edgesΓm

ij , where we designate: S1 = Si+ 12 j ,
S2 = Sij+ 12

, S3 = Si− 12 j and S4 = Sij− 12
. The viscous terms V isc(wij) in (20) and (21) are



approximated by using a FV version with central differences, see (Vimmr, November 2003) for
details. The added one-dimensional TVD-type viscosity terms dw1nij and dw2nij in the directions
of the change of index i and j respectively, are defined by Causon, (Causon, 1989).

5. Numerical results

For the turbulent computation of the compressible viscous fluid flow through the two-dimensional
model of the gap caused by the incorrect contact of screw surfaces the same computational grid
with 190 × 64 quadrilateral cells as for the laminar flow computation presented in (Vimmr &
Švı́gler, 2004) is used and the same reference Reynolds number Re∞ = 3900 and boundary
conditions are considered. At the inlet ∂ΩI , the stagnation pressure p01 = 1, the stagnation
temperature T̃01 = 1, the inlet angle α1, ∂T̃

∂n
= 0 and

∑2
j=1 τ̃

ijnj = 0, i = 1, 2 are prescribed. At

the outlet ∂ΩO, the static pressure p2 = 0.5, ∂T̃
∂n
= 0 and

∑2
j=1 τ̃

ijnj = 0, i = 1, 2 are kept. On

the solid walls ∂Ωp2
W and ∂Ωp∆3

W , the boundary conditions ũ = 0, ṽ = 0 and ∂T̃
∂n
= 0 are satisfied.

n is the outward unit normal vector to the boundary.

Fig. 4 displays the isolines of the Mach number in the gap plotted with ∆M = 0.02. The
separation of the flow is simulated from the position where the height of the gap enlarges. The
flow is transonic Mmax ≈ 1.6 and it seems to be stationary in contrast to the numerical results
obtained by using the laminar flow computation presented in (Vimmr & Švı́gler, 2004), where
the flow is non-stationary, see Fig. 5, in which the isolines of the Mach number in the gap plotted
with ∆M = 0.02 at time t = 2.798 · 10−4 s are shown. The changes in the shape of the wake
are observed in the laminar case and the maximum values of the Mach number change from
Mmax ≈ 1.1 to Mmax ≈ 1.4.

Fig. 4 Isolines of the Mach number in the gap
(turbulent flow computation).

Fig. 5 Isolines of the Mach number in the gap
(laminar flow computation).

The velocity magnitude distribution and the isolines of the static pressure in the two-
dimensional model of the gap caused by the incorrect contact of screw surfaces are shown in
Fig. 6 and Fig. 7, respectively.



Fig. 6 Velocity magnitude distribution in [m/s]
(turbulent flow computation).

Fig. 7 Isolines of the static pressure in [Pa]
(turbulent flow computation).

The static pressure distribution along a middle streamline in this gap for the turbulent
flow computation is visualized in Fig. 8. It can be seen that the presribed pressure ratio
pinlet/poutlet = 2 is satisfied. Fig. 9 displays the static pressure distribution along a middle
streamline in the gap for the laminar flow computation at time t = 2.798 · 10−4 s.

Fig. 8 Static pressure distribution in the gap
(turbulent flow computation).

Fig. 9 Static pressure distribution in the gap
(laminar flow computation).

The value ṁ = 0.0445 kg/ms of the
mass flow rate per unit width for the tur-
bulent flow computation through the gap
caused by the incorrect contact of screw
surfaces is determined. For the sake of
completeness, the mass flow rates per unit
width in dependence on the time for the la-
minar flow computation through this gap
presented in (Vimmr & Švı́gler, 2004) are
shown in Fig. 10.

Fig. 10 Mass flow rates per unit width
(laminar flow computation).



6. Conclusions

Numerical method for the computation of a turbulent compressible fluid flow through the two-
dimensional model of the gap caused by the incorrect contact of screw surfaces based on the
algebraic Baldwin-Lomax turbulence model was presented in this paper.

As a conclusion of our numerical testing we can deduce that the leakage flow through
this gap for the pressure ratio pinlet/poutlet = 2 is transonic but without shock waves which
are characteristic for transonic or supersonic flows. This is probably result of the very narrow
gap. The turbulent flow computation gives the stationary results and converges better than the
laminar flow computation that gives non-stationary results. The value of the mass flow rate per
unit width for the turbulent flow computation through the gap caused by the incorrect contact
of screw surfaces was determined.
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