

DYNAMIC MODEL OF DIFFERENTIALLY DRIVEN SOCCER ROBOT

R. Grepl¹, J. Hrabec, P. Honzík, F. Šolc²

Summary: This paper describes the modelling of differentially driven soccer robot. Dynamic model of mechanical subsystem is built in Matlab/SimMechanics software. Detailed attention is dedicated to modelling of rolling of the wheel as well as to slipping model in forward and lateral direction. Developed simulation model can be used as reference for other simplified models used in control.

1. Úvod

Tento příspěvek se zabývá modelováním dynamiky chování fotbalového robotu kategorie MI-ROSOT. Systém pro hru v této kategorii je znázorněn na obr. 1. Herní scéna je snímána kamerou umístěnou nad středem hřiště. Obraz je vyhodnocován řídicím počítačem a jeho analýzou jsou získány údaje o poloze a orientaci jednotlivých robotů a míče. Tyto údaje jsou zprostředkovány řídicímu algoritmu (strategii) hry. Vnější rozměry robotu jsou omezeny krychlí o hraně 80 mm,

Obr. 1: Schéma uspořádání robotického fotbalu

¹ Ing. Robert Grepl, Ústav mechaniky těles, mechatroniky a biomechaniky, Fakulta strojního inženýrství, VUT v Brně, Technická 2896/2, 616 69 Brno, Czech Republic,

email: grepl@fme.vutbr.cz, web: http://www.umt.fme.vutbr.cz/~rgrepl/

² Ing. Jakub Hrabec, Ing. Petr Honzík, prof. Ing. František Šolc, CSc., Ústav automatizace a měřicí techniky, Fakulta elektrotechniky a komunikacních technologií, VUT v Brně, Kolejní 2906/4, 612 00 Brno, Czech Republic, email: hrabec@feec.vutbr.cz

hmotnost smí být maximálně 650 g. Rychlost robotů konstruovaných v současné době dosahuje až $4m.s^{-1}$ a zrychlení až $10m.s^{-2}$. Jedná se tedy o poměrně rychlý dynamický systém. Robot se pohybuje pomocí dvou pevných kol s diferenciálním řízením. O napájení se starají akumulátory a komunikace s řídicím počítačem je bezdrátová (více informací v [1]).

V souvislosti s růstem kvality softwarového i hardwarového vybavení pro řízení se objevují i požadavky na modelování dynamiky pohybu robotu.

Návrhem dynamických modelů pro řízení jsme se zabývali již v [2, 3]. Zde prezentujeme přístup k tvorbě dynamického modelu v prostředí Matlab/SimMechanics (nástroj pro modelování kinematiky a dynamiky MBS).

Naším cílem je model robotu, který by zahrnoval všechny podstatné faktory objevující se při reálném provozu (dynamika mechanické části především pak složitou problematiku tření, dynamika pohonů, vliv akčích zásahů řízení, změnu maximální tečné síly v kole robotu vlivem jeho dynamiky). Takto komplexní model zahrnující i interakci systému s okolím lze považovat za virtuální prototyp (VP). V tomto příspěvku uvádíme výsledky práce vedoucí k návrhu mechanické části budoucího VP.

Dynamický model mechaniky robotu společně s jednoduchým diferenciálním řízením lze použít k detailní analýze pohybu robotu z hlediska prokluzu v kolech vlivem záběrového momentu (ve směru pohybu robotu) i setrvačných sil (ve směru kolmém k pohybu robotu).

Následující text článku je rozdělen takto: nejprve se v části 2. budeme věnovat problematice efektivního modelování valení tělesa po tuhé podložce bez a s uvažováním prokluzu; v části 3. pak uvedený přístup aplikujeme konkrétně na případ fotbalového robota.

2. Problém modelování valení

2.1. Přenesení síly a kompenzace momentem

Uvažujeme jednoduchou úlohu valení kola po podložce. Zanedbáváme pasivní odpory, tělesa jsou tuhá. Na kolo působí hnací moment M_1 a pohybujeme se v tíhovém poli.

První problém se objeví, chceme-li namodelovat tečnou sílu F_t . Pokud budeme v SimMechanics působit silou na těleso, můžeme tak učinit pomocí Generalized Force v bloku Joint Actuator (působíme silou ve vazbě) nebo užitím bloku Body Actuator (působíme silou přímo na těleso v některém jeho definovaném bodě). Problém je v charakteru vazby "valení". Během odvalování se totiž neustále mění bod kontaktu (vazby) mezi oběma tělesy (v našem případě základním tělesem a kolem). Sílu F_t nelze proto jednoduše definovat.

Proto nahradíme sílu F_t staticky ekvivalentně přenesenou silou a momentem. Střed kola je stále tentýž bod a lze na něj proto pomocí bloků SimMechanics působit. Na obr. 2 je znázorněno schéma problému, uvolnění a přenesení síly F_t do bodu B.

Přenesení síly do středu kola a kompenzaci momentem provedeme v simulačním schématu na základě znalosti pohybových rovnic tělesa:

$$F_t = m\ddot{x} \tag{1}$$

$$F_N - G = 0 \tag{2}$$

$$M_1 - F_t R = I_B \ddot{\varphi} \tag{3}$$

V případě, že bude tření mezi kolem a podložkou nulové, jsou natočení φ a posuv x nezávislé. Pokud naopak nepřipustíme prokluz ve vazbě (tečná síla F_t může nabývat libovolně vysoké

Obr. 2: Model valení kola po podložce (bez pasivních odporů): a) definice problému, b) odstranění vazby a nahrazení ekvivalentním silovým působením c) přenesení síly F_t do bodu B a kompenzace momentem $M_t = F_t R$ (v naznačeném smyslu)

hodnoty), pak platí kinematická závislost:

$$x = R\varphi \tag{4}$$

Reálná situace je "mezi" oběma případy.

2.2. Valení bez prokluzu

Pro modelování valení bez prokluzu můžeme použít dva různé přístupy: *kinematickou* a *dyna-mickou* vazbu mezi oběma stupni volnosti ϕ a *x*. Který z nich vybereme závisí na požadované aplikaci, přičemž dynamická vazba umožňuje rozšíření k modelování s prokluzem.

Model s kinematickou vazbou

První přístup využívá přímo rovnice 4 a jejich derivací podle času. V simulačním schématu na obr. 3 snímáme pomocí Joint Sensor veličiny φ , $\dot{\varphi}$ a $\ddot{\varphi}$ a přepočteme je na x, \dot{x} a \ddot{x} (přitom je nutné převést úhel na spojitý pomocí bloku Continous Angle). Blokem Joint Actuator/Motion pak kinematicky budíme posuvnou vazbu.

Obr. 3: Model valení bez prokluzu (varianta s pevnou kinematickou vazbou mezi rotací a translací)

Podle rovnice 3 musíme ještě vyjádřit snížení hnacího momentu vlivem přenesení síly F_t . Podle 4 a 1 platí:

$$F_t = mR\ddot{\varphi} \tag{5}$$

(6)

a tedy

$$M_1 - mR^2 \ddot{\varphi} = I_B \ddot{\varphi} \tag{7}$$

Pro řešení v SimMechanics bude tedy levá strana rovnice představovat moment, kterým budeme na rotační vazbu působit.

Dodejme ještě, že klasické řešení integrací v Simulinku nebo Matlabu (řešení ODE, např. solver ode45) umožňuje úpravu a jednoduché řešení takto³ :

$$M_1 = (I_B + mR^2)\ddot{\varphi} \tag{8}$$

Model s dynamickou vazbou

Jiný postup, který lze později velmi jednoduše zobecnit na případ s prokluzem, využívá "dynamické" vazby mezi translací a rotací. Primární zůstává opět rotace. Pomocí 5 vypočteme tentokrát pouze *sílu* F_t , kterou přímo působíme na translační vazbu. Stejným způsobem jako v předchozím případě počítáme kompenzaci působícího momentu.

Obr. 4: Model valení bez prokluzu (varianta s dynamickou vazbou mezi rotací a translací)

Při testování obou popsaných přístupů jsme porovnávali hodnotu x a $R\varphi$. V případě kinematické vazby je zcela pochopitelně odchylka nulová. U dynamické vazby určitou odchylku očekáváme (vznikne při integraci $\ddot{x} \rightarrow \dot{x} \rightarrow x$). Pro čas simulace 20 s se chyba pohybuje v řádu 10^{-15} , což je naprosto vyhovující. Podobnou odchylku dostaneme při porovnání x hodnoty u kinematické a dynamické vazby.

4

³ Tato úprava má stejný význam, jako uvažování pouhého otáčení kola kolem okamžitého středu otáčení A a převod momentu setrvačnosti k tomuto bodu pomocí Steinerovy věty.

2.3. Valení s prokluzem

Předchozí případy modelování valení bez prokluzu jsou poměrně nezajímavé a vlastně ani není nutné je provádět, stejného výsledku můžeme dosáhnout použitím metody redukce.

Případ valení s prokluzem je podstatně zajímavější. Při řešení plně využijeme přístupu "s dynamickou vazbou" (kap. 3), přidáme ale do modelu omezení síly F_t . Podle zákona smykového tření víme, že:

$$Ft \le F_T = F_N f \tag{9}$$

Opět vypočteme pomocí 5 sílu F_t , kterou kterou podle rov. 9 omezíme blokem Saturation

Obr. 5: Model valení s prokluzem kola

Poznamenejme ještě, že pro řešení problémů smykového má SimMechanics připraven blok Stiction Actuator. Ten ale v tomto případě použít nelze, v posuvné (P1) a rotační (R1) vazbě dochází k pohybu, i když se kolo nesmýká.

3. Dynamika fotbalového robota

Fotbalový robot je řízen dvěma stejnosměrnými motory, které přes ozubený převod pohánějí zvlášť každé kolo. Model popsaný v tomto článku neuvažuje dynamiku elektrického subsystému, je však možné ji do schématu velmi jednoduše začlenit.

Na obr. 7 je schéma modelu robotu včetně regulace na požadovanou rychlost otáčení obou kol.

⁴ Mohli bychom zde použít i standardní blok Saturation, uvedené řešení je obecnější, umožňuje reagovat na změnu normálové síly.

Obr. 6: Diferenciálně řízený robot (3D CAD model, který je použit při vizualizaci dynamiky chování)

Obr. 7: Základní schéma rychlostního řízení fotbalového robotu

3.1. Model bez dynamiky kol

Nejjednoduším přístupem je zanedbání dynamiky otáčení kol robotu. Setrvačné vlastnosti kol zahrneme do matice setrvačnosti těla. Simulační model je pak relativně jednoduchý (obr. 8).

Moment $M_{1,2}$ působící na kolo se přepočte na sílu a pomocí Body Actuator přivede na těleso (nutno zapnout Local Body CSS). Rychlost "kola" se obdobně snímá použitím Body Sensor.

Zamezení pohybu ve směru osy y (kolmé k pohybu robotu) je provedeno pomocí síly úměrné rychlosti v tomto směru (obr. 11). Opět jsou použity Body Sensor a Body Actuator, které umožní práci v lokálním souřadném systému tělesa. Síla je navíc omezena blokem Saturation Dynamic. V uvedeném schématu je omezení konstantní, ale lze je aktuálně měnit podle dynamiky robotu.

3.2. Model s uvažováním dynamiky kol a jejich prokluzem

Problematice modelování valení jsme se věnovali detailně v části. 2.. Při následujícím návrhu simulačního modelu budeme postupovat stejně, situace je komplikovanější o přenos sil mezi koly a tělem robotu.

Nejprve provedeme rozbor valivé vazby. Postup přenesení síly F_t do bodu B a kompenzace

Obr. 8: Model fotbalového robotu bez uvažování dynamiky kol a prokluzu kol. Tření v ose kolmé k pohybu je uvažováno (subsystém *B*, viz obr. 11).

momentem M_t je zcela shodný s myšlenkou popsanou v kap. 2.. Na obr. 9 je znázorněno uvolněné kolo a tělo robotu (na těle jsou zakresleny pouze síly v bodě B).

Obr. 9: Síly působící ve vazbě kolo-tělo robotu (uvolnění rotační vazby)

Pohybové rovnice pak lze sestavit ve tvaru:

$$F_t - F_{Bx} = m\ddot{x} \tag{10}$$

$$F_N - G - F_{By} = 0 \tag{11}$$

$$M_1 - F_t R = I_B \ddot{\varphi} \tag{12}$$

Vidíme, že do problému vstupují další dvě síly F_{Bx} a F_{By} , jejichž velikost je třeba určit. Jsou to síly, které působí mezi kolem a tělem robotu, budeme je tedy měřit na *vazbě* mezi těmito dvěma tělesy. Měření je nutno provádět v lokálním souřadném systému, který je pevně spojen s tělem. Proto vložíme mezi tělo a kolo "náboj", pevně spojený s tělem vazbou Weld, na které budeme měřit přenášené síly (obr. 10–prostřední schéma).

Schéma subsystému valení je uvedeno také na obr.10, plně vychází z odvozených rovnic dynamické rovnováhy 10–12.

Obr. 10: Simulační model fotbalového robotu v SimMechanics (subsystémy A a B uvedeny na obr. 11

Modelování tření v ose kolmé k pohybu robotu je stejné jako v kap. 3.1.(obr. 11).

Na obr. 11) je také uveden subsystém, který porovnává rychlost náboje kola a obvodovou rychlost kola a tím zjišťuje míru prokluzu ve valivé vazbě.

Obr. 11: Simulační model fotbalového robotu (subsystémy: A – model tření v ose y, B – kontrola prokluzu)

4. Závěr

V článku jsme detailně popsali možné řešení úlohy valení tělesa po podložce v prostředí SimMechanics. Uvedena je i konkrétní aplikace na případ diferenciálně řízeného robotu, kdy je jednoduchý problém valení rozšířen na obecnou soustavu. Vliv dynamiky těla robotu kompenzujeme odečtením síly ve vazbě kolo–tělo robotu.

Výsledný model má následující vlastnosti:

- zahrnuje dynamiku těla i kol robotu
- modeluje možnost prokluzu v obou kolech
- modeluje možnost prokluzu v ose kolmé na směr robotu
- rychlost simulace není vhodná pro řízení v reálném čase

Vytvořený model robotu lze velmi dobře použít při testování řídících algoritmů a algoritmů plánování trajektorie. Také může sloužit jako refence při verifikaci jednodušších modelů.

Prezentovaný přístup modelování valivé vazby v prostředí Matlab/SimMechanics lze použít i pro systémy s větším počtem kol (automobily, kolejová vozidla, vícekolové mobilní roboty).

Poděkování

Publikovaných výsledků bylo dosaženo za podpory ministerstva školství, mládeže a tělovýchovy České republiky, výzkumný záměr MSM 0021630518 "Simulační modelování mechatronických soustav".

Reference

- [1] webovské stránky projektu RoBohemia: http://www.robohemia.cz/, FEE VUT, 2006
- [2] Šolc, F., Hrabec, J., Grepl, R.: *Modelling of Fast Differentially Driven Mobile Robot*, NETSS 2006, 3rd International Winter Workshop, Přerov, 2006
- [3] Šolc, F., Hrabec, J., Honzík, B.: Control of a soccer robot, In 7th Symposium on Robot Control SYROCO 03. 7th Symposium on Robot Control SYROCO 03. Wroclav Poland: Wroclav University of Technology, s. 379 - 384, 2003

10 _