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Summary: Two material models of an arterial wall based on hyperelastic 

approach are compared within a solution of a boundary value problem for thick–

walled tube. Thick–walled tube, which is the computational model used here, was 

loaded by internal pressure p = 16 kPa and axial pre–stretches z = 1.15, 1.3, 
1.45. An influence of residual strains was included. It is shown that purely 

phenomenological model revealed circumferential Cauchy stress distribution in 

the range of supposed physiological values. Structural model based on a fiber-

reinforcement is significantly more compliant than phenomenological one. 

Moreover, the residual strains are necessary in the structural model to obtain 

physiological values of circumferential stress. An influence of an helix angle, 

which is a structural parameter, on the stress distribution was determined.

1. Introduction 

Most of models describe arterial mechanics using a framework of hyperelastic material. This 
models are based on assumption that artery is hyperelastic, e.i. on existence of an elastic 
potential or a strain energy density function (SEDF). If any energy density function describes 
any deformation we can obtain components of a stress tensor as products of differentiation of 
the SEDF with respect to components of a strain tensor. This approach is suitable to 
overcome difficulties which are related to description of highly nonlinear mechanical 
behavior of the arterial tissue. 

The aim of this study is to compare two models of the constitutive law of the artery 
based on hyperelastic approach. The framework of cylindrical thick-walled tube was used in. 
Geometrical data were obtained from sample of a human abdominal aorta, harvested above a 
bifurcation close to renal arteries, which were used in our residual strain analysis in 2002. The 
sample of male abdominal aorta were obtained form cadaver and measurement of an opening 
angle was done 10 hours after death. A donor was 31 age old man. The measurement was 
done in Department of Forensic Medicine of University Hospital Na Královských 
Vinohradech in accordance with laws of the Czech Republic. 
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2. Methods 

First model (fully-phenomenological approach) As was shown in many papers the 
hyperelastic modeling of a mechanical behavior is based on the assumption of the strain 
energy density function  existence. The strain energy density function must satisfy a 
condition that the material time derivate of  is equal the stress power. This condition leads 
to an equation which means constitutive law for the hyperelastic material. In our case of 
phenomenological model which does not include the internal structure of the artery we will 
obtain, see e.g. Hayashi (1996), Holzapfel (1998), Holzapfel (2000), 
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This relation is the most general anisotropic stress–strain relation describing 
incompressible hyperelastic material. S is second Piola–Kirchhoff stress tensor defined in a 
reference configuration, p is the undetermined Lagragian multiplier and C is right Cauchy–
Green strain tensor. The arterial wall incompressibility is commonly used presumption, see 
e.g. discussion in Holzapfel (2000). The thick-walled tube model operates with a cylindrical 
coordinate system with the principal directions et (circumferential), ez (axial), er (radial). Here 
the incompressibility condition leads to 
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Where J is volume ratio and i (i = t, r, z) are principal stretch ratios in the circumferential, 
axial and radial direction, respectively. The deformation mapping stretch ratios in the thick–
walled tube with residual strains have the form 
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where  is the opening angle, r and l are radius and length in spatial configuration and R and 
L are the same in the reference configuration. Spatial configuration is defined by all 
mechanical loads (residual strains, axial pre–stretch, inflation by blood pressure). Spatial 
radius is related to undeformed one by: 

z
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where ro
2 is outer radius in the reference (undeformed) configuration. A Green strain tensor is 

adopted as deformation measure in the form bellow: 
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There is no shear deformation in the thick–walled tube model and i (i = t, z, r) are principal 
stretch ratios. Cauchy–Green strain tensor C, which was mentioned above, is defined in its 
counterparts and related to Green strain tensor by: 
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Here I is identity second-order tensor. The local stress–strain relationships are given by 
derivatives of strain energy density function  as: 
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i (i = t,z,r) is Cauchy (true) stress. If we consider force equilibrium in the radial direction we 
will obtain an equation: 

0
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d trr     with boundary condition       prr ir .  (9) 

This condition is used to determine Lagrangian multiplier p. The inner radius of the artery is 
denoted ri. Using incompressibility we can transform differential equation to the form: 
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Displacement related to the load pressure p can be obtained as a numerical solution of this 
integral. Components of the Cauchy stress tensor may be expressed using equation (8) and: 
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The strain energy density function is adopted in the form published by Holzapfel and 
Weizsäcker (1998): 
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is constructed as the coupled expression, = iso + aniso, isotropic part and 
anisotropic one. The isotropic part is related to an elastin component of the deformation of the 
arterial wall with material parameter c1. That is the function of the first invariant of the 
Cauchy–Green strain tensor. The anisotropic part is related to the collagen bundles 
deformation but their deformation is not specified by any structural description, components 
of Cauchy–Green strain tensor related to continuous description of whole arterial wall are 
used. The restriction to the two–dimensional formulation is used with four material 
parameters c2, b1, b2, b4. The exponential shape is used with regard to large strain stiffening. 
For more information about the two–dimensional formulation of three–dimensional problem 
see Holzapfel (2000). It is worth to notice that two–dimensional restriction is also used in 
Holzapfe (1998) but proposed type of the strain energy density function could be extended 
into three dimensions, see Holzapfel (1998). Generally we can say that the first material 
model consider structural infomation about an arterial wall but does not take it into account in 
mathematical expressions. 

 Second model was also proposed by Holzapfel and co–workers (in Holzapfel [2000]). 
This model is more structurally based since authors consider arterial wall as a heterogenous 
fiber–reinforced continuum. We will mention only the most important facts, further 
information are available in the original author’s paper.  The structural information is 
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incorporated into the second model by using two (reference) direction vectors a0i (i =1, 2; | a0i

| = 1) which characterize two families of collagen fibers in arterial walls.  

02010201 a,a,a,a, CCC anisoiso     (14) 

They introduced two other tensors A1 and A2 as products of a0i a0i = Ai (i =1, 2). Now they 
consider integrity basis for second–order tensors C, A1 and A2 what consists of nine 
invariants; more details you can see in Holzapfel (2000). From these invariants they choose 
two denoted as 64 II , :
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The final shape of is:
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There is a simple reason to use invariants 64 II ,  in the constitutive theory since they are 

the squares of the stretches in the directions a0i (i =1, 2), so they are stretch measures for two 
families of collagen fibers and therefore they have a clear physical interpretation. With the 
assumption that two families of the collagen fibers are presented at the same radius through 
whole length of a cylinder we can characterize them by vectors: 

T
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a cylindrical polar coordinate system is used.  is an angle between the direction of the two 
collagen fibers symmetrical spirals and the circumferential direction (hence a value of the 
spiral angle  is the same for both of the bundles of collagen fibers). If we consider this 
symmetry we can write structural invariants 64 II ,  as the measures of the fiber stretches in the 

form: 
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Thus strain energy density function defined in (16) could be rewrite in the form: 
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It is important to note that the model presented in Holzapfel (2000) is two–layered and for 
each arterial layer (intima + media, adventitia) is included its own SEDF, . Hence the model 
contains 6 material parameters, 3 for each layer, and geometrical parameters as are layers 
thicknesses and collagen bundles angles.

3. Results

The first material model is given by the equation (12) and second one by (19). Geometrical 
data of the problem were obtained form artery which segments underwent residual strain 
measurement in 2002 in our lab. Solving of the problem was done by standard math 
procedures in Maple, release 8, Maple Waterloo Inc. Material parameters used in this study 
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are adopted form literature published by authors of material models (see Holzapfel [1998, 
2000]). Values of the parameters are listed below.  

1998: c1= 30.523 kPa, c2 = 0.4308 kPa, b1 = 5.36603 [1], b2 = 3.55858 [1], b4 = -31.7206; 
2000: c1 = 44.24 kPa, k1 = 0.206 kPa, k2 = 1.465 [1].   (20) 

Figure 1 1998 Circumferential Cauchy stress 

Figure 2 2000  Circumferential Cauchy stress 

Figure 3 Influence of helical pitch angle and axial pre-stretch on Circumferential Cauchy 
stress
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4. Conclusions 

The internal load pressure corresponds to 120 mmHg. The value of axial pre–stretch is one of 
the most important inputs to the model. The used axial pre-stretch values (15, 30 and 45%) 
correspond to possible physiological values but real in-situ values of the axial pre-stretch still 
remain as a question since a literature is not unique in this. Possible values range from z =
1.05 to approximately z = 1.45.

So, in this paper two material models were compared in the case of physiological 
loading. The first model showed typical behavior of thick–walled tube. Determined 
displacements and computed stress fields range close to expected values. The circumferential 
stress between 200 – 250 kPa is commonly considered as a stress state similar to smooth 
muscle cells in vivo states. Second model, what is utilized for two–layered computational 
model, showed significant influence of residual strains on a shape of stress–radius curves and 
on the stress values also. It seems to be necessary to suppose high values of an opening angle. 
Residual strains have to exceed opening angle of 90° to manage stress field close to supposed 
physiological range.

The shape of the stress curves did not change significantly by varying the pitch angle 
close to  = 40° value but the curves are shifted and the increase of the longitudinal pre–
stretch causes convergence of circumferential stress curves. Second model is also 
significantly more compliant than first one and un–physiological values of predicted inner 
radius were achieved within the model. But it is important to note that second layer was not 
considered in this model.  
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