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Summary: We present results of mathematical modeling of the transient 

temperature field in a new chamber developed to measure surface tension of 

supercooled liquids, and results of auxiliary measurements. The chamber is 

designed to enable a very fast (within 0.1 s) formation of a homogeneous 

temperature field (within 0.02 K) after a temperature jump of 60 K. The interior of 

the chamber of dimensions 20x16x32 mm is filled with dry nitrogen surrounding 

the measuring capillary and thermometers (very fine thermocouples and RTD’s). 

The temperature jump is generated by switching the flow direction of the nitrogen 

serving as a heat transmitting fluid. To reduce the thermal boundary layer near 

the bottom and ceiling walls, they are made permeable and some gas is sucked 

out. The flow in the chamber is laminar. We compute the temperature field 

analytically and numerically, using the commercial software Fluent. The 

analytical solution results in a series of goniometric and confluent hyperbolic 

functions. The Fluent code has been adapted to accept special boundary 

conditions for the velocity and temperature fields at the permeable walls. The 

results indicate that the design objectives of the experimental device were met. 

1. Introduction

For a limited time, pure liquids can remain liquid even deep below the freezing point. Liquid 

below its equilibrium freezing point is metastable and it is called the supercooled liquid. 

Supercooled liquid water was observed down to 240 K. Surface tension is an important 

property in case of small droplets, capillary flows etc. It governs the process of nucleation, i.e. 

formation of droplets. In nucleation experiments, formation of liquid droplets of supercooled 

water is assumed to take place down to 205 K. Only two datasets [Hacker 1951, Floriano 

1990] exist for the surface tension of supercooled water and they are inconsistent. Therefore, 

a project was started to obtain new measurements. The present contribution describes analysis 

of the temperature field in the measuring chamber of the device. The surface tension is 

measured by an original modification of the capillary method. Capillaries has internal 

diameter ranging from 0.05 to 0.3 mm. The requirement is that within a fraction of second 
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homogeneous temperature field must be established in the chamber, in order that the active 

length of the capillary and temperature sensors (miniature thermocouples and platinum 

resistance thermometers) are at the accurate temperature (within 0.02 K). The change of 

temperature is performed by switching the flow of dry nitrogen, which comes either from left 

or right, tempered to low temperature or room temperature to melt the ice in case the liquid 

would freeze. 

Figure 1. View of the experimental chamber. The relative magnitude of the flows is indicated 

by the size of the arrows. 

2. The new chamber for measurement of surface tension of supercooled liquids 

The internal dimensions of the chamber are as follows: length a=16 mm, height b=20 mm, 

width c=32 mm. Front and back walls are made of optical glass of thickness 4 mm. Upper and 

lower walls are made of 4 mm thick sintered glass, commercial porosity grade 3.

Flow properties of the sintered glass plates. In the relevant range the pressure drop 

across the sintered glass plate is linearly proportional to the normal component of the 

incoming flow velocity. This behavior is a consequence of the creeping flow Re 1  through 

the pores of the sintered glass. We made measurements of the dependency of the pressure 

drop across a porosity grade 3 sintered-glass circular plate of diameter 55 mm on the flow rate 

of air (0 to 15 liters per minute, corresponding to flow velocities 0 to 0.104 m/s at room 

temperature (20°C) and atmospheric pressure (101325 Pa). The magnitude of the 

proportionality constant between the pressure drop and normal flow velocity was determined 

as 5.3×10
4

Pa.s.m
-1

. Analogous measurements in a lower flow rate range (0 to 2 liters per 

minute, corresponding to flow velocities 0 to 0.015 m/s) were made for a porosity grade 4 
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(finer) sintered glass plate of the same dimensions, yielding a proportionality constant of 

5.7×10
5
 Pa.s.m

-1
.

Flow properties of the screens. Pressure losses across screens were analyzed by Cornell 

[Cornell 1958]. In the range 0.006<Re<20 he recommends a correlation by MacDougall 

[loc.cit.]: 

1.27

1/ 2

33.93 (1 )

Re 1 (1 )

s s

s
 (1) 

where  is the non-dimensional loss coefficient 

21

2

p

v

. (2) 

s is the solidity (or solidity ratio), defined as a ration of blocked area to the total area of the 

screen, and Re is the Reynolds number, defined as 

1

1

Re
(1 )

v d

s
. (3) 

3. Analytical computation of the temperature field 

After switching the flow direction, the gaseous content of the chamber is almost 
instantaneously (in about 0.06 s) exchanged from the warm gas to the cold gas. However, the 

side-walls glass walls and the upper and lower sintered glass walls still remain at the initial 

(high) temperature. Compared to the gas, the solid parts have a very high thermal capacity. 

Heat diffuses from the hot walls into the chamber and deteriorates the temperature field. 

Therefore, measures are taken to reduce this effect by modifying the flow using the inlet and 

outlet screens which homogenize the flow and upper and lower permeable plates through 

which the thermal boundary layer is sucked out. For a relatively long period (seconds) the 

situation is quasi-stationary—the walls remain at the initial temperature. This is the case 

which is studied in this contribution.  

 Because the entrance and outlets of the chamber through materials providing uniform 

distributions of velocities, we can consider the following boundary conditions. The fluid 

enters at x = 0 with velocity u0, independent of y and z. At x = a it leaves at velocity ua, in 

dependent of y and z. At y = 0 and y = b the fluid is sucked out at velocities v0 and vb,

independent of x and z.   At z = 0 and z = c the velocity is zero (impermeable wall). Although 

the normal components of the velocities are nonzero at the permeable walls, the tangential 

(parallel with the wall) components should vanish. To a sufficient degree of approximation 

the flow field can be assumed as follows: 

0 0, , 0u u qx v v qy w , (4) 

Here, q is a constant. The flow-field given by Eqs. (4) satisfies the continuity equation and the 

Navier-Stokes equations. The boundary conditions are satisfied for the normal components of 
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the velocities. However, the tangential components are nonzero. From the Navier-Stokes 

equations the pressure field can be determined: 

2 2

0 0 0/ 2 / 2p p q u x qx v y qy . (5) 

Because the model of the flow field is independent of z, the differential equation of a 

streamline is given as 

0

0

v qydy v

dx u u qx
. (6) 

This equation can be easily integrated, showing that the streamlines are hyperbolas: 

0 0 0 0
0

0

( )( )1 v qy u qx
y v

q u qx
. (7) 

For the assumed flow field, the equation of energy conservation results in 

2 2 2

0 0 2 2 2

T T T T T
u qx v qy

x y x y z
. (8) 

where  is thermal diffusivity of the fluid. We constrain further analysis to the symmetric case 

b bv v , i.e. 0 0, /bv q v b . We introduce the following dimensionless quantities: 

/ , / , / , / , / , / , / , /x x b y y b z z b a a b c c b u ub v vb w wb , (9) 

01
0

0 1 0

, ,bv u bT T
T u

T T u
. (10) 

We note that 0u  has the physical meaning of the Péclet number, characterizing the ratio of the 

heat convection to heat conduction. In the dimensionless form we have 

2 2 2

2 2 2
( ) ( )

T T T T T
u x v y

x y x y x
. (11) 

We solve Eq. (11) by the separation of variables. We assume a particulate solution in the form 

of a product  ( ) ( ) ( )X x Y y Z z . Substituting into Eq. (11) we find 

X X Y Y Z
u v

X X Y Y Z
. (12) 

This equation will be satisfied for arbitrary independent variables if the functions X, Y, and Z

satisfy the following ordinary differential equations 

0xX uX X , (13) 

0yY vY Y , (14) 

 0zZ Z , (15) 

and the parameters , ,x y z  are related as x y z . A general solution can be fond as 

a linear combination of independent partial solutions, 
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1 1

( , , ) ( ) ( ) ( )mn mn m n

m n

T x y z C X x Y y Z z , (16) 

where , ,mn m nX Y Z  are solutions to Eqs. (13), (14), and (15), respectively, for different values 

of parameters xmn ym zn .

 A solution ( , , )T x y z  of Eq. (11)  will be searched, satisfying the following boundary 

conditions: 

(0, , ) ( , )T y z F y z , (17) 

( , , ) 0T a y z , (18) 

( , 1, ) ( ,1, ) 0T x z T x z , (19) 

( , , ) ( , , ) 0T x y c T x y c . (20) 

We only consider cases, when the distribution of the temperatures at the inlet, given by 

function ( , )F y z  is symmetric with respect to the axes ,y z . This allows considering only the 

intervals 0 1, 0y z c . The boundary conditions at 1,y z c  will be replaced 

by the requirements of symmetry—all odd derivatives must be zero, in particular 

0 0

0, 0

y z

T T

y z
. (21) 

Boundary conditions Eq. (19), (20), and (21) will be assured by requiring 

(0) (1) 0m nY Y . (22) 

(0) ( ) 0n nZ Z c . (23) 

Boundary condition Eq. (18) will be satisfied for 

( ) 0mnX a . (24) 

Further we chose 

(0) 1mnX . (25) 

so that boundary condition (17) 

1 1

( ) ( ) ,mn m n

m n

A Y y Z z F y z . (26) 

The coefficients Amn are chosen in the way that this condition holds. We consider a simpler 

case when the right-hand side of Eq. (26) can be expressed as a product of two functions, 

0 0

, ( ) ( ), ( ) ( ), ( ) ( )y z y m m z n n

m n

F y z F y F z F y B Y y F z C Z z . (27) 

Then the coefficients Amn are given as mn m nA B C . We come back to the determination of the 

coefficients Bm and Cn after solving the differential equations (13) to (15). 

 Eq. (15) can easily be solved. For the symmetric case it is sufficient to consider solution 
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1/ 2 1/ 2 (2 1)
cos , , 1,2,3,...

2
z z

n
Z C z n

c
 . (28) 

Substituting 0v u y  for the symmetric case, Eq. (14) reads 

0 0yY u yY Y . (29) 

To transform this equation to a standard form, we substitute 

20 ,
2

t
y

u
y t W Ye . (30) 

This substitution results into Kummer’s equation [Abramowitz 1964] 

0

1 1
( ) 0, 1 ,

2 2

y
y y y y y y ytW t W W

u
. (31) 

Solution of Kummer’s equation can be given in terms of Kummer’s (confluent 

hypergeometric) functions M and U:

, , , ,y y y y y y yW A M t B U t . (32) 

A solution, satisfying initial conditions 0 1, 0 0Y Y  is 

, ,t
y yY e M t . (33) 

 Further we proceed to Eq. (13), which we will solve for boundary conditions 

(0) 1, ( ) 0X X a . (34) 

It is necessary to determine the parameter y  such that the second condition (22), (1) 0Y ,

holds. 

Substituting 0 1u u x  for the symmetric case, reads 

0 1 0xX u x X X . (35) 

This equation can also be transformed to the Kummer’s equation (31) using 

20 1 ,
2

s
x

u
s x W Ye . (36) 

The parameters of the solution are 

0

1
,

2 2

x
x x

u
. (37) 

A general solution in the form (32) is not suitable, because the function U has complex 

values. This function can be expressed as 

1 1 ,2 ,( , , )
, ,

sin (1 ) ( ) ( ) (2 )

b M a b b sM a b s
U a b s z

b a b b a b
. (38) 
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The functions M are real. The reason of the imaginary component is the power 1 1/ 2bs s ,

because s is negatie. We note that function 1/ 2 31
2 2

( ) , ,s M s  is a solution linearly 

independent of 1
2

, ,M a s  and it is real for the present case. Therefore, it is convenient to 

assume the solution in the form 

( )x A x BX t A X s B X s  (39) 

where 1
1 2
( ) , ,xX s M s  and 

1/ 2 31
2 2 2
( ) , ,xX s s M s . In order to satisfy boundary 

conditions (34), the constants are chosen as follows: 

 ( ) / , ( ) / , (0) ( ) ( ) (0)x B x A A B A BA X q D B X q D D X X q X q X , (40) 

20 (1 )
2

u
q a . (41) 

 We determine now coefficients Bm and Cn. Specially we consider the case of homogeneous 

inlet temperature, corresponding to setting 1yF  for (0,1)y  and 1zF  for (0, )z c .

However, with respect to boundary conditions (22) and (23) these functions must vanish at 

the endpoints of the respective intervals: (1) 0yF , ( ) 0zF c  and be even functions. The last 

requirement was already included in choosing the solutions Eqs. (28) and (33). Coefficients 

for the cosines series Cm are determined by Fourier analysis of the square signal as 

14
1

(2 1)

n

mC
n

. The coefficients Bm are obtained by minimizing the residuum

max
2

1

0
1

( ) 1
n

y n n

n

R B Y t dt . The necessary conditions of a minimum is 

max1

max0
1

( ) ( ) 1 0, 1,...,

n
y

n n n
n n

R
Y t B Y t dt n n

B
. (42) 

After a re-arrangement we obtain a set of linear equations  

max 1 1

max
0 0

1

, 1,..., , ( ) ( ) , ( )
n

n n n n n n n n n n

n

G B g n n G Y t Y t dt g Y t dt . (43) 

4. Numerical computations and results 

The computation model in the commercial software Fluent for CFD simulation was created 

according to the experimental design in order to verify the setup, especially the efficiency of 

the input screen. The purpose of the screen is to form a uniform velocity field at the inlet to 

the chamber. The flow was modeled as time independent. The gas (nitrogen) was assumed to 

be incompressible and the heating due to the viscous friction in liquid could be neglected. We 

solved completely the balances of mass, momentum and energy with the restrictions 

mentioned above.  A section of the geometrical model is in Figure 2. The flow enters the 

domain on inlet, passing through the porous jump. This jump represents the screen used to 
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homogenize the flow deformed by the inlet pipes. Then the flow passes the second screen 

(porous jump) in the forward direction and up and down the porous medium simulating 

sintered glass plates. The inlet velocity was calculated from known flow-rate to be 1.66 m/s.  

The temperature of the inlet flow was set to 240 K. This temperature was also set for the walls 

of inlet parts. Because in reality all the inlet pipes are drilled into a cooper block cooled to 

temperature 240 K, the wall thickness for the heat conduction equation was set to zero. The 

flow temperature was thus equal to the wall temperature. The barometric pressure was set at 

the boundary condition outlet. The wall temperature at the horizontal and vertical walls of the 

chamber and at the outlet parts was set to 300 K. The ratio between the flow outgoing the 

vertical outlets and horizontal outlet were set with using the porous jump and porous media 

condition. Porous medium is modeled by the addition of a momentum source term to the 

standard fluid flow equations. The source term is composed of a viscous loss term and an 

inertial loss term. For a homogeneous porous media can the source term is formulated as 

1

2
i i p mag iS v C v v  (44) 

where  is the laminar fluid viscosity,  is the permeability and C2 is the inertial resistance 

factor. A simplification of Eq. (44) for the porous media in 1D is the porous jump  

21

2
pp v C v m  (45) 

Figure 2.: Geometry of the computation model. This figure also shows the inlets (inclined 

channels) and outlets (wider horizontal channels). The flow enters either from left inlet 

channels and leaves through the outlet channel at right, or vice versa. The passive inlets and 

outlet are closed by an external valve. 
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Figure 3: Streamlines at the central horizontal plane (left) and at the central vertical plane 

(right). Dashed lines are the inlet (lower) and outlet (upper) screens. It can be seen that the 

inlet screen does not homogenize the flow completely, although the main influence of the 

inlet pipes is filtered out. 

Figure 4: Temperature field at the central horizontal plane (left) and at the central vertical 

plane (right). Dashed lines are the inlet (lower) and outlet (upper) screens. It can be seen that 

the thermal boundary layer is substantially thinner in the case when it is sucked out through 

the sintered glass plates (right) in comparison to the normal thickening of the thermal 

boundary layer on the optical glass (left). 
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where m is the thickness of the medium. Due to the insignificant speed of flow into the 

computational domain, in our calculations, we neglected the second term in the brackets and 

estimated the value of   based on a known pressure loss. The constant temperature of 300 K 

was assigned to the porous media. The temperature at the glass wall was set at 300 K, 

corresponding to the surrounding temperature, with the glass thickness 2 mm. In this case the 

glass thickness cannot be neglected, due to the low heat conduction coefficient of glass. 

5. Conclusions 

The results indicate that the design objectives of the experimental device were met. However, 

there is a space for improvements. It appears that the inlet screen has a too small 

hydrodynamic resistance, allowing some disturbances from the inlet tubes to enter the 

measuring chamber. This causes an increase of the conductive heat transport from the hot 

walls and explains the difference between the numerical simulation and analytical 

computations. 

 Comparing the numerical and analytical computations methodically, the analytical 

computations have the obvious advantage of deeper insight into the basic mechanisms and 

influences of parameters. On the other hand, some simplifications must be accepted and it is 

not possible to capture important effect such as the disturbances protruding through the 

Figure 5: Temperature profiles in the vertical central plane (left) and in the horizontal 

central plane (right). Solid lines are computed using the analytical model, points connected 

by dotted lines are results of the CFD Fluent. The profiles are computed at given distances 

from the inlet screen (the distance of the inlet and outlet screens is 16 mm). Note that the 

boundary layer on the left is much thinner than on the right—due to the sucking effect. 
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screens. It is also to be said that in this 3D case—although with a simple geometry—the 

complexity of the analytical computations is almost prohibitive.  
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