

THE PROBABILITY METHOD SIBRA USED IN FIELD OF STRESS RELAXATION BY CREEP

J. Lenert*

Summary: This paper deals with possibility of using SBRA method for determination of stress relaxation by creep for direct stress. The assessment of present state of creep problems is here given. Specifically deals with the determination of stress as dependence on time. Further is the problem solved for changing temperature. Finally the results are applied for creep data of material X22CrMoV12.1, for which stress histograms for relaxation curves (dependence of instantaneous stress on time) were created.

1. Úvod

S vývojem vysoce výkonných strojů, které vyžadují dosáhnout dlouhodobé služby za teplot kolem 800⁰C, přicházejí do popředí problémy spolehlivosti jednotlivých součástí těchto zařízení. Pro moderní výpočtové metody je nutno znát celou řadu charakteristických veličin, klasifikujících jak vlastnosti materiálu, tak celý komplex provozních podmínek. Velmi významné jsou z uvedených hledisek i problémy relaxace napětí při tečení materiálu.

Na proces tečení je třeba se dívat jako na proces tepelně aktivovaný, který se u technických materiálů skládá z celé řady fyzikálních mechanizmů. Je nutno zdůraznit, že se z hlediska mikroobjemů jedná o procesy stochastické (náhodné rozdělení precipitátů, vad mřížky, nehomogenit materiálu hranic zrn atd.). Proto je nutno s veličinami charakterizujícími proces tečení (doba do lomu, deformace, rychlost tečení, relaxace napětí aj.) pracovat jako s náhodnými veličinami. Výpočty uvedených veličin vycházejí obvykle ze zkoušek za tepla při stálém zatížení a stálé teploty. Hlubší teoretické zpracování problémů creepu naráží na nedostatek dlouhodobých zkoušek, což je způsobeno omezeným počtem speciálních pokusných zařízení. Zkoušky při náhodně kolísajících teplotách a napětích se neprovádějí vůbec, protože se velice nesnadno simulují. Pravděpodobnostní metoda SIBRA umožňuje uvedené problémy řešit na velmi dobré úrovni. Je však třeba hledat cesty pro získání histogramů alespoň některých veličin.

^{*} Prof. Ing. Jiří Lenert, CSc.,: VŠB – Technická univerzita Ostrava, Fakulta strojní, Katedra pružnosti a pevnosti, Tř.17.listopadu 15, 708 33 Ostrava-Poruba; +420.597 321 232, fax: +420.596 916 490; e-mail: jiri.lenert@vsb.cz

2. Navrhovaná koncepce

2 _

Existuje celá řada empirických vztahů, které popisují proces tečení (Brown,1987; Evans,1987; Garofalo, 1965; Lenert et al., 1987; Lenert, 1993). Většinou udávají vztah mezi deformací a časem s uvážením vlivu teploty a zatěžujícího, tzv. aplikovaného napětí. Všechny rovnice obvykle vyjadřují závislost deformace na čase při konstantní teplotě a konstantním napětí. Je rovněž zřejmé, že navrhované vztahy platí pouze za podmínek, za kterých byl prováděn experiment.

Okamžitá deformace v závislosti na čase, potřebná pro stanovení relaxace napětí za creepu se určí z výrazu

$$\varepsilon(t) = \varepsilon(0) - \varepsilon_c = \frac{\sigma(0)}{E} - \varepsilon_c = \frac{\sigma(t)}{E}, \qquad (1)$$

kde $\sigma(0)$ je počáteční napětí, $\varepsilon(0)$ nebo $\frac{\sigma(0)}{E}$ je počáteční deformace, ε_c je okamžitá deformace a $\sigma(t)$ is papětí v čese t

deformace a $\sigma(t)$ je napětí v čase t.

Z hlediska průběhu deformace v závislosti na čase byla na našem pracovišti navržena pro rychlost deformace rovnice (Lenert et al., 1987; Lenert, 1993)

$$\dot{\varepsilon}_{c} = \frac{\varepsilon_{c}}{t} \Big[r + C(\sigma, T) p t^{p} \Big], \tag{2}$$

která velmi dobře vyhovuje i pro materiály s převažující terciální oblastí creepu. V rovnici (2) je $C(\sigma,T)$ parametr závislý na napětí σ a teplotě T, p je materiálová konstanta, charakterizující terciální etapu tečení. Řešením této diferenciální rovnice se získá vztah pro okamžitou deformaci, a to

$$\varepsilon_c = K(\sigma, T)t^r \exp[C(\sigma, T)t^p].$$
(3)

Tato rovnice popisuje chování materiálu za creepu a lze ji vyjádřit pomocí oddělených funkcí ve tvaru

$$\varepsilon_c = f_1(\sigma).f_2(T).f_3(t), \tag{4}$$

kde funkce $f_1(\sigma)$ a $f_2(T)$ lze navrhnout tak, aby vyhovovaly fyzikálním procesům, které creepový proces za daných podmínek řídí. Vhodné je volit

$$\begin{cases} f_1(\sigma) = B\sigma^n, \\ f_2(T) = T^m \exp[-U/RT], \end{cases}$$
(5)

kde *B*, *n*, *m* a *U* jsou materiálové konstanty.

Třetí funkce $f_3(t)$ plyne přímo z rovnice (3), a je

$$f_{3}(t) = t^{r} \exp\left[C(\sigma, T)t^{p}\right].$$
(6)

Derivuje-li se rovnice (1) podle času, bude

$$\frac{d\sigma(t)}{Edt} = -\frac{d\varepsilon_c}{dt} = -\dot{\varepsilon}_c(t).$$
(7)

Po dosazení z (3) a (4) potom bude

$$\frac{d\sigma(t)}{f_1(\sigma)E} = -f_2(T)f_4(t)dt,$$
(8)

kde

$$f_{4}(t) = \exp[C(\sigma, T)t^{p}][rt^{r-1} + C(\sigma, T)pt^{r+p-1}].$$
(9)

Po úpravě lze rovnici (8) zapsat ve tvaru

$$\frac{d\sigma(t)}{\sigma^n} = -EBf_2(T)f_4(t)dt,$$
(10)

odkud po dosazení za f_4 a integrování plyne

$$\frac{\sigma^{1-n}}{1-n} - \frac{\sigma^{1-n}_{(0)}}{1-n} = -EBf_2(T) \left[r \int_0^t e^{C_{(\sigma,T)}t^p} t^{r-1} dt + C_{(\sigma,T)} p \int_0^t e^{C_{(\sigma,T)}t^p} t^{r+p-1} dt \right].$$
(11)

Rovnici (11) lze po zavedení relací $a = \frac{r}{p}$, $x = C(\sigma, T)t^p$, odkud $t = \left[\frac{x}{C(\sigma, T)}\right]^{\frac{1}{p}}$ a $dx = C(\sigma, T)pt^{p-1}dt$, převést na tvar

$$\frac{1}{1-n} \left(\sigma^{1-n} - \sigma^{1-n}_{(0)} \right) = -EBf_2(T) \left[\frac{1}{C^a} \left(a \int_{-\infty}^{x} x^{a-1} e^x dx + \int_{-\infty}^{x} x^a e^x dx \right) \right].$$

 $\frac{1}{1-n} \left(\sigma^{1-n} - \sigma^{1-n}_{(0)} \right) = -EBf_2(T) \left[\frac{1}{C^a_{(\sigma,T)}} \left(a \int_0^1 x^{a-1} e^x dx + \int_0^1 x^a e^x dx \right) \right].$ (12) Ve vztahu (12) je nutno řešit integrál typu $I = \int x^b e^x dx$. Řešení se usnadní rozvinutím

výrazu e^x v řadu, a to $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^k}{k!}$.

Integrál I potom bude

$$I = \int \left(x^{b} + \frac{x^{b+1}}{1!} + \frac{x^{b+2}}{2!} + \frac{x^{b+3}}{3!} + \dots + \frac{x^{b+k}}{k!} \right) dx,$$

který po integraci lze zapsat ve tvaru

$$I = \frac{x^{b+1}}{b+1} + \frac{x^{b+2}}{b+2} \cdot \frac{1}{1!} + \frac{x^{b+3}}{b+3} \cdot \frac{1}{2!} + \frac{x^{b+4}}{b+4} \cdot \frac{1}{3!} + \dots + \frac{x^{b+k+1}}{b+k+1} \cdot \frac{1}{k!} =$$

$$= x^{b+1} \left(\frac{1}{b+1} + \frac{x}{b+2} \cdot \frac{1}{1!} + \frac{x^2}{b+3} \cdot \frac{1}{2!} + \frac{x^3}{b+4} \cdot \frac{1}{3!} + \dots + \frac{x^k}{b+k+1} \cdot \frac{1}{k!} \right) =$$

$$= x^{b+1} \sum_{i=0}^{k} \frac{x^i}{b+1+i} \cdot \frac{1}{i!}.$$
(13)

Hranatou závorku v rovnici (12) lze pomocí (13) potom zapsat ve tvaru

$$Z = \frac{x^{a}}{C_{(\sigma,T)}^{a}} \left(a \sum_{i=0}^{k} \frac{x^{i}}{a+i} \cdot \frac{1}{i!} + \sum_{i=0}^{k} \frac{x^{i+1}}{a+1+i} \cdot \frac{1}{i!} \right).$$
(14)

Po dosazení za *a* a *x* a po úpravách dále bude

_ Engineering Mechanics, Svratka 2006, #187 _

$$Z = t^{pa} \left\{ a \sum_{i=0}^{k} \frac{\left[C(\sigma, T) t^{p} \right]^{i}}{a+i} \cdot \frac{1}{i!} + \sum_{i=0}^{k} \frac{\left[C(\sigma, T) t^{p} \right]^{i+1}}{a+1+i} \cdot \frac{1}{i!} \right\} =$$

$$= t^{r} \left\{ a \sum_{i=0}^{k} \frac{\left[C(\sigma, T) t^{p} \right]^{i}}{i!} + \frac{\left[C(\sigma, T) t^{p} \right]^{k+1}}{\frac{r}{p} + k + 1} \cdot \frac{1}{k!} \right\}.$$
(15)

Z rovnice (12) potom plyne pro napětí v čase *t* vztah

$$\sigma(t) = \left[\sigma_{(0)}^{1-n} - (1-n)EBf_2(T)Z\right]^{\frac{1}{1-n}}.$$
(16)

3. Vyhodnocení experimentálních výsledků

Jako příklad je dále uvedena analýza relaxace napětí pro proměnnou teplotu. Hodnoty konstant rovnic (2) ÷ (9) pro vybraný soubor materiálu X22CrMoV12.1 byly stanoveny lineární regresí. Konstanta *p* byla stanovena metodou "pokus-chyba", tedy byla vybrána hodnota konstanty ze zadaného vektoru tak, aby směrodatná odchylka byla nejmenší. Zkoumaný soubor obsahoval 210 experimentálních hodnot pro teploty 500 a 550°C a napětí v rozsahu 200÷250MPa. Hodnoty vypočítaných konstant uvádí Tabulka 1. Hodnoty parametru $C(\sigma,T)$ pro uvedené teploty a napětí, při nichž byl prováděn experiment, jsou uvedeny v Tabulce 2. Relaxační křivky podle rovnice (16) pro uvedené teploty a napětí znázorňuje obr.1.

Т	ał	bul	lka	1
-	uc	· •••	inco	-

В	6 932615E+07	σ	Т	$C(\sigma T)$
D	1 (0047)	[MPa]	[°C]	0(0,1)
<i>n</i>	-1,092470	200	500	9,108795. 10 ⁻⁷
т	3,491781	250	500	8,673643.10 ⁻⁶
U	52115,12	210	550	3,127284. 10 ⁻⁵
r	0,3743022	220	550	1,265210.10 ⁻⁴
р	1,0	230	550	2,643754.10 ⁻⁴

Tabulka 2

Na rovnici (16) byla aplikována plně pravděpodobnostní metoda SBRA (Simulation Based Reliability Assessment). Byly stanoveny histogramy napětí pro zadané doby formou počítačové simulace Monte Carlo a programu M-STARTM (Marek et al., 2001). Teplota nebyla zadána deterministicky, ale měnila se podle normálního rozdělení N1-4. Výsledky pro počáteční napětí $\sigma = 200MPa$ a proměnnou teplotu $T=500.N1-4^{\circ}C$ uvádí obr.2. Obrázek potvrzuje zřejmý vliv teploty nad střední hodnotou, projevující se nižšími hodnotami napětí. Histogramy pro doby 40000, 80000, 120000, 160000 hodin uvádí obr.3.

Jako doplnění výsledků slouží tabulky 3 a 4, ve kterých jsou uvedeny kvantity napětí pro uvedený čas, které nebudou s danou pravděpodobností překročeny.

Obr.2 Relaxační křivky včetně histogramů

Obr.3 Histogramy okamžitého napětí

Tabulka 3						
P.,	Kvantil napětí σ v čase t (20000 – 200000h), T=500.N1-4					
I tR	20000h	40000h	60000h	80000h	100000h	
0.01	47.57934368	41.45417189	37.62822918	34.72961842	32.35647359	
0.05	51.02924367	44.62746605	40.70116019	37.67850667	35.29091598	
0.10	53.03499949	46.51923757	42.59722400	39.45896750	37.11027026	
0.20	55.76282739	49.02125797	44.88557687	41.79582235	39.28175763	
0.25	56.80582042	49.99765617	45.80091802	42.68605276	40.16209035	
0.30	57.68835298	50.79097971	46.71625917	43.46500438	40.92504537	
0.40	59.45341809	52.49967657	48.22003392	45.02290761	42.45095541	
0.50	61.21848321	53.96427388	49.78919017	46.52517143	43.80079891	
0.60	62.82308786	55.61194585	51.35834643	47.91615646	45.26802010	
0.70	64.82884367	57.25961782	52.99288420	49.64097789	46.96999669	
0.75	65.79160646	58.35806580	53.84284384	50.53120831	47.79164056	
0.80	66.99505995	59.45651378	54.95432952	51.58835693	48.84803982	
0.90	70.36472972	62.62980794	57.96187901	54.48160578	51.72379336	
0.95	73.09255762	65.19285323	60.44637642	56.92973942	54.07134727	
0.99	78.30752274	70.07484425	65.34998972	61.49217031	58.59038854	
1.00	84.64571111	76.05528325	70.90741813	67.16738921	64.10714023	

Tabulka 4						
P _{tR}	Kvantil napětí σ v čase t (20000 – 200000h), T=500.N1-4					
	120000h	140000h	16000h	18000h	200000h	
0.01	30.21596803	28.55314322	26.97049754	25.51786490	24.19716567	
0.05	33.19033081	31.37322331	29.73428474	28.26198612	26.94025995	
0.10	34.88996669	33.08236276	31.38192712	29.86830098	28.50774240	
0.20	37.15614786	35.30424405	33.56106703	32.01005412	30.66303077	
0.25	38.00596580	36.07335680	34.41146310	32.81321155	31.44677200	
0.30	38.71414741	36.84246955	35.10240990	33.54943920	32.23051322	
0.40	40.27214696	38.29523808	36.59060301	35.02189448	33.60206037	
0.50	41.68851020	39.74800662	37.97249662	36.29356041	34.87563986	
0.60	43.03405526	41.11531818	39.30124047	37.69908592	36.24718700	
0.70	44.73369114	42.73900066	40.89573309	39.30540077	37.81466945	
0.75	45.58350908	43.50811341	41.74612915	40.10855820	38.59841068	
0.80	46.57496334	44.53359708	42.70282472	41.04557520	39.57808721	
0.90	49.40768980	47.35367717	45.46661193	43.65583685	42.12524619	
0.95	51.74468913	49.66101543	47.75205136	45.86451978	44.37850221	
0.99	56.13541515	54.01932103	52.21663069	50.28188564	48.68907895	
1.00	61.58841359	59.40311030	57.37215683	55.63626850	53.97933222	

4. Závěr

Z analýzy získaných výsledků lze učinit závěr, že navrhovaná rovnice (16) je vhodná pro stanovení napětí v čase *t*. Rovnice je rovněž vhodná i pro stanovení okamžitého napětí v případě zadané konstantní počáteční deformace.

Mění-li se teplota během zkoušky v rozumných mezích (např. podle normálního rozdělení), lze pravděpodobnostní metodou SBRA prokázat zřejmý vliv teplot na výslednou hodnotu napětí pro daný čas.

5. Poděkování

Příspěvek byl vypracován v rámci řešení projektu Grantové agentury České republiky. Registrační číslo projektu je 103/04/1451.

6. Literatura

- Brown,S.G.R.(1987) Extrapolation by Creep Curve Shape Analysis. *Proceedings of the Third International Conference held at University College, Swansea.*
- Evans, R.W. & Wilshire, B. (1987) Power Law Creep of Polycrystalline Copper. *Proceedings* of the Third International Conference held at University College, Swansea.
- Garofalo, F. (1965) Fundamentals of Creep and Creep-Rupture in Metals. *The Macmillan Company, New York.*
- Lenert, J., Brázdil, V. & Foldyna, V. et al. (1987) Analytische Beschreibung des Wachstums plastischer Verformung beim Kriechen. VI. Symposium Warmfeste metallische Werkstoffe, Zittau.
- Lenert.J.(1993) Creep Curve Fitting Procedure and Stress Relaxation. Sborník vědeckých prací Vysoké školy báňské v Ostravě, číslo 1,ročník XXXIX, řada strojní, článek 1094, pp.39-47.
- Marek, P.,Brozetti,J. & GUŠTAR, M. (2001) Probabilistic Assessment of Structures using Monte Carlo Simulation, Background, Exercises, Software. *Published by ITAM CAS CR*, Prague, Czech Republic, ISBN 80-86246-08-6.

8 _