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Summary: Variational statements corresponding to boundary value problems are 

usually computed by hand calculations. In this paper an algorithm is derived 

which enables to implement the computation of variational statements as a 

computer program in the enviroment of symbolic programming languages such as 

Mathematica or Maple.

1. Introduction 

In general, the variational statement for the weak solution of the two-point boundary value 
problem L u(x) = f(x), Bs u(s) = hs, defined on interval x (0,1) with end points s=0,1 for 
operator L = (L,B0,B1) of  order 2m has the following form: find u  U such that W(u,v) = 0 
for all  v  V. One of the main ideas underlying the concept of the weak solution is that with 
properly chosen bilinear form W(u,v) and suitable Hilbert (Sobolev, etc.) spaces U, V it is 
possible to reduce the  solution of  the original problem of order  n = 2m to the solution of the 
problem, in which only derivatives up to the m-th order appear. Except for this order 
reduction there is an additional benefit in the possibility to solve the problems on spaces with 
less demanding requirements on the continuity and differentiability of the admissible 
functions. In most of practically used formulations the homogeneous geometric boundary 
conditions enter the weak formulation in definition of the spaces U, V; while the dynamic 
boundary conditions enter the definition of the bilinear form W(u,v). This form should be 
chosen so that the weak solutions automatically guarrant the fullfilment of the dynamic 
boundary conditions. However, as discussed by Rektorys (1985), the question of the 
construction of the actual bilinear form W(u,v) corresponding  to given  boundary   value 
problem  is  not trivial, especially when complicated boundary conditions are considered. 

In this paper the Dirichlet's remainder is represented in matrix form. From two 
decompositions of this matrix an  algorithm  is  deduced, which resolves the above  problem 
of assigning a bilinear form for weak formulation to the given boundary value problem at 
least  in  the  class of one-dimensional linear differential operators. The proposed method is 
based on rewriting of the Green's identity  (Lu,v) -( u,L*v ) -H[u,v]  = 0 to a form, to which 
the given data of the boundary value problem can be substituted directly. 
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2. Matrix representation of the operator and of the Green`s identity 

Consider two-point boundary value problem 
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where the domain operator is the linear differential expression L of even order n=2m
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For simplicity we suppose an=1. Column vectors h0, h1 represent the nonhomogeneous 
part of boundary conditions and the state vector u is defined as 
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where u
(k)

 (x)=D
(k)

u(x). To study the properties of the above boundary value problem (1), let 
us consider the Green's identity 
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which reduces to the integration by parts formula in the case of one-dimensional domain. The 
H[u,v] is the Dirichlet's remainder term 
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in which the Dirichlet's expressions Hs[u(s),v(s)], rewritten as bilinear forms with matrices  Hs

in the state vectors u(s) and v(s), are evaluated at the boundary points s=0 and s=1. L* is the 
differential expression adjoint to the differential expression L.

For L defined by (2), the explicit form of the Green's identity reads 
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From (6) we get directly the adjoint differential expression as  
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Due to the unfriendly form of the Dirichlet's remainder term in (6), it is not quite clear how 
to substitute the given boundary conditions for functions u(x)  to the Green's formula and how 
to compute the adjoint boundary conditions for functions v(x).We recall, that adjoint boundary 
conditions BBs

*
v(s) = 0 together with given boundary conditions (considered now as 

homogeneous) are  minimal conditions to eliminate the Dirichlet's remainder term. To achieve 
the aim of this paper, first we rewrite the Dirichlet's remainder to enable the direct substitution 
of the given data, i.e. of the L, B0B , BB1, f(x), h0 and h1 into the Green's identity. 

Following Nánási (1994) the domain equation Lu  = f can be  written as an equivalent 
system of first order differential equations 

),()()()( xxuuDxu fBAL  (7) 
where
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The Green's identity in the state space has now the form 
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Inspection of (6) shows, that the Dirichlet's remainder in (6) can be expressed by the matrix 
A

T, i.e. 
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From (9) the advantages of the formulation at the state space in terms of the special matrix A
are obvious: 

1) Both the adjoint expression L* = -AT
D +B

T and the Dirichlet's remainder term are given 
by the same matrices A and B. Moreover, the matrix B is closely related to the matrix A,
as easily checked by inspection. 

2) Actually it is not necessary to carry out the process of integration by parts, as according to 
(9) its result is expressed directly in terms of input matrices A, B.

3. The first decomposition of the matrix A
T

Let us decompose the matrix A
T at both end points to a product of two regular 2m 2m

matrices 
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To incorporate the given boundary conditions, we chose the half of the columns of the 
matrices AL0, AL1 to be identical with the rows of the boundary matrices BB0 and B1B , respec-
tively. The rest of the columns of the matrices ALs can be chosen arbitrarily under the 
condition that the matrix ALs is regular. Then evidently the complementary rows of the 
matrices 

1,0,1
sT

LsRs AAA  (11) 
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can be identified with the matrices of adjoint boundary conditions B*
1 .By the term comple-

mentary rows we mean rows with row indices 2m+1-ik, where ik are the column indices 
corresponding to the given boundary conditions in matrices AL0, AL1. For details see Nánási 
(1994). The decompositions (11) are considerably simplified, if the given boundary 
conditions are first transformed to canonical form, i.e. they are resolved with respect to the 
highest derivatives and all highest derivatives in each boundary conditions are eliminated 
from the rest of the boundary conditions. Then the given boundary conditions can be coded to 
the matrix ALs in such order, that the resulting matrix is triangular. The most simple form is 
achieved if the dummy columns contain single non-zero element, namely unity, on the 
diagonal. The matrix AT has also triangular structure, therefore it follows directly from (11), 
that the resulting matrix ARs has triangular structure. 

For convenience we introduce auxiliary matrices which are binary description of the given 
and adjoint boundary conditions. Let ik, k=1,2,...,m, 1 ik 2m  are the column indices of 
those columns in ALs,which correspond to given boundary conditions. Let us construct a 
binary vector iLs of length 2m such that iLs,j =1 for j= ik  and iLs,j =0 for j  ik. Let iA is a vector 
of length 2m, which has all components equal to unity. The binary description of adjoint 
boundary conditions is given by the auxiliary vector iRs = iA - iLs. Later we make use of 
substitution matrices defined by relations 

                        ,diag,diag 222 usmRsmvsLsmus IIiIIiII  (12) 

where I2m is 2m  2m identity matrix. The first decomposition thus provides an algebraic tool 
for direct computation of adjoint boundary conditions via relation (11). 

4. The second decomposition of the matrix A
T

To construct the variational statement it is necessary to integrate the constituent expressions 
in the bilinear expression (Lu,v) so that in the resulting integral part only derivatives of the 
order lower than m+1 appear. Essentially it would be sufficient to integrate only the terms 
aiu

(i)
(x) v(x) with i  m+1. However, this type of integration would destroy the symmetry of 

originally symmetric problems. To preserve the symmetry, we integrate each of the 
expressions aiu

(i)
(x) v(x) up to the half of its degree i. Full integration by parts of the terms with 

even order provides even number of boundary terms, so the notion of the half degree is 
intuitively clear. Contrary, the integration by parts of the terms with odd degree provides odd 
number of boundary terms and the notion of the half degree becomes unambigious. 
Optionally we may decide to a compromise - the critical derivatives may be split into equal 
halfs. One of them is included to integration by parts of the whole expression from the order 
2m down to the order m and the second identical half-term is included to the integration of the 
whole expression from the order m down to the order 0. This gives rise to the half-terms on 
the diagonals of both matrices A1 and A2 in formulas (17).  

From detailed analysis of the full, partial or backward integration of the bilinear 
expressions (Lu(x),v(x)) resp. (u(x), L*v(x) ) we have the relations 
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where
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The actual form of the matrices A0 , A1 and A2 depends on the strategy chosen to integrate 
the terms with odd order of the derivative. The above mentioned one  leads to matrices   
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i.e. with the boundary terms expressed as combination of symmetric and antisymmetric 
bilinear forms. Whatever the strategy of the actual integration is, we always end up with 
decomposition 

 (15) ,21 AAAT

in which the matrices A1, A2 represent the partial contributions to the Dirichlet's remainder 
resulting from integration by parts of the operator on the left side of the scalar product (.,.)
from order n=2m to the half-order m and from the order m to the order 0, respectively. 

5. The extended Geen's identity

Instead of the direct use of the Green's identity (4) we modify it by backward integration of 
L* from the order 2m of derivatives of functions v(s) to the half order m in (4), which leads to 
the extended integral identity 
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This extended integral identity still holds true for arbitrary pair of sufficiently smooth 
functions u(x), v(x). Not specified differential expressions L1 and L2 are the results of partial 
integration by parts of the domain operator L, for formaly selfadjoint  problems L1 = L2. The 
integral identity (16) can be interpreted as transformation of the extended Green's identity (4) 
with respect to the data of the boundary value problem (1). Matrices ALs and ARs contain 
information on the homogeneous parts of given and adjoint boundary conditions, respectively. 
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With respect to (10) and (11) it is obvious that the last two terms in (16) are equal to  
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which is the result of the conventional integration by parts "up to the half order". In 
developing the extended identity (16), the trivial identities  have been used to "unfold" the 
matrix A1 so that the given data of the boundary value problem (1) could be encoded for 
arbitrary set of given homogeneous or nonhomogeneous boundary conditions. This unfolding 
is necessary, as the columns m+1,...,2m of the matrix A1 consist of only zero elements and 
can give no information on the geometrical boundary conditions. 

6. Variational statements for boundary problems

The key results of this paper are based on observation that the formula (16) essentialy 
represents unconstrained variational statement corresponding to the given boundary value 
problem. The final variational statement can be derived from (16) by substitution of the given 
data.

To keep the final result, which is a scalar value, still in the form of a bilinear form in state 
vectors u(s), v(s), instead of the usual direct substitutions we insert properly chosen 
"substitution" matrices introduced in (12), which render equivalence with the classical 
substitutions. The substitution of the homogeneous part of given boundary conditions for 
functions u(s) is achieved with right multiplication of the matrix ALs by the matrix Ius, while 
the substitution of the nonhomogeneous part of given boundary conditions is achieved by 
replacing the term  u

T(s) ALs with term h
e
s Ivs, where the vector h

e
s of length 2m is the 

extension of the vector hs  of the nonhomeogeneous part of the given boundary conditions, 
obtained by adding zero elements to the dummy positions. In this way the eventual nonzero 
elements of the extended vector he

s take the same positions in he
s as are the column positions of 

the corresponding homogeneous parts of given boundary conditions in the extended matrix 
ALs. Here we used the obvious identity 
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to get rid of terms multiplied by zero components of the extended vector h
e
s  With these 

substitutions Eq. (16) becomes after some rearrangements 
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It holds information on the domain part of operator in terms of ( f,v)-( L1u,L2v ), on the given 
nonhomogeneous boundary conditions in terms of the linear form 
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and on the boundary part of the operator in terms of the bilinear form 
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The  functionality of the above approach can be assured  by further integration of the term 
(L1u,L2v ), which  leads  to recovering of the original boundary value problem from bilinear 
identity (17). Backward integration in (17) gives 
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As A1+A2=A
T=ALs I ARs and I=Ius+Ivs, we end up with statement 
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As (18) holds for arbitrary function v(s) and ARs is regular, we conclude that
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Thus, the first relation recovers the domain equation (1) and the second recovers the given 
boundary conditions . 

The left side of (17) can be identified with the "unconstrained" form of the variational 
statement. The adjective unconstrained expresses the fact, that both the testing functions v(s)

and the functions u(s) are not subject to any conditions at the boundary points of the definition 
domain. The selection of Hilbert spaces Uk and Vk is equivalent to the appropriate  restriction 
of W(u,v). In most cases the restriction to the spaces of functions conforming the 
homogeneous geometrical boundary conditions of given and adjoint problem is the best 
solution. Moreover, in the majority of practical problems the boundary problems are 
symmetric (selfadjoint), so even more simplicity is gained from the identity of the spaces Uk

and Vk of admissible functions. 
The formula (17) has been developed as an algorithm implemented in the enviroment of the 
symbolic programming language Mathematica and has been widely tested on many examples 
of  boundary value problems. 

7. Conclusions 

The Dirichlet's remainder term appearing in the Green's formula associated with given two-
point boundary value problem is written in a matrix form. Two suitable trivial decompositions 
of this matrix are introduced, which enable to deduce formal algorithms to compute 
symbolically both the data of adjoint boundary value problem and variational functionals 
(bilinear forms for weak solution) corresponding to the given boundary value problem in both 
unconstrained and constrained version. 
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